

FACHEVENT 2017 – IM RAHMEN DES ASCHWANDEN-CAMPUS

Zuverlässig – von der Bemessung bis zur Ausführung

REFERENTEN

Prof. Dr. Albin Kenel, HSLU, Hochschule Luzern Technik & Architektur Dr. Stefan Lips, Technischer Leiter F&E, F.J. Aschwanden AG, Lyss Stefan Walt, Verantwortlicher Bereich RINO, F.J. Aschwanden AG, Lyss Sonja Oswald, Verantwortliche BIM, F.J. Aschwanden AG, Lyss

REFERATE

3 BIM / Digitalisierung

Sonja Oswald

7 RINO System – zur nachträglichen Verstärkung von Flachdecken und Stützen

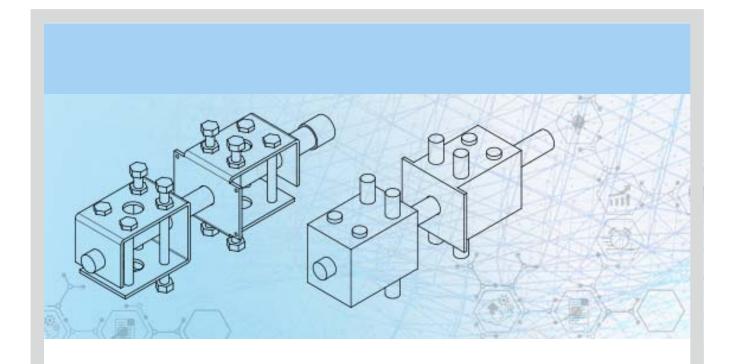
Prof. Dr. Albin Kenel Stefan Walt

25 RINO - Anwendungen aus der Praxis

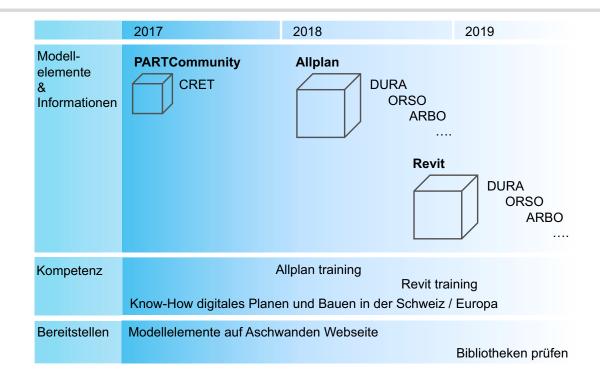
Stefan Walt

35 ARBO - Kragplattenanschlüsse

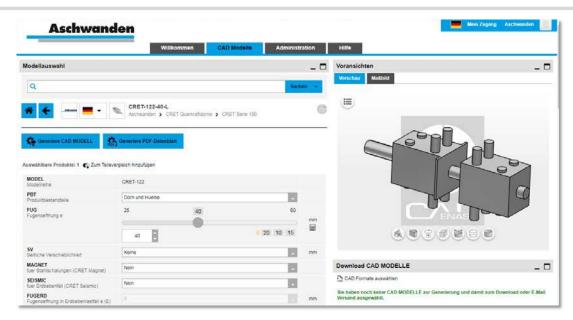
Anforderungen an den Feuerwiderstand und das Brandverhalten von Kragplattenanschlüssen Dr. Stefan Lips


50 ORSO-V - Stahl/Betonverbundstützen

Branduntersuchung und neues Bemessungsmodell ORSO-V Prof. Dr. Albin Kenel Dr. Stefan Lips


BIM / Digitalisierung

Sonja Oswald


BIM - Verantwortliche / Business Development

BIM (Building Information Modelling) Tragwerksmodell Analyse-I Statikmodell Aschwanden Software Plâne, Fachmodelle (z.B. Terminplan, Leistungsverzeichnis) Hillignife building information Modelling in being den growth of the statik properties of the statik properties

Aschwanden BIM Roadmap

- CRET Serie 100, CRET Serie 500, CRET Serie 10-40
- 3D Formate: Allplan, Revit und weitere wie .ifc-Dateien
- 2D Formate: .dwg, .dxf

DURA für Allplan und Revit

	Bauprojekt / Ausschreibungsprojekt	Ausführungsprojekt	
Level of Geometry (LOG)	200	300	
	zeigt Sperrzone	zur Bewehrungsplanung	
Level of Information (LOI)			
Name	DURA-70-340	DURA-70-340	
Beschreibung	Durchstanzbewehrung	Durchstanzbewehrung	
Hersteller	F.J. Aschwanden AG	F.J. Aschwanden AG	
Webseite	www.aschwanden.com	www.aschwanden.com	
Material	Stahl, B500B	Stahl, B500B	
Statisch tragend	Ja	Ja	
Version	06/2018	06/2018	

ARBO für Allplan und Revit				
	Bauprojekt / Ausschreibungsprojekt	Ausführungsprojekt		
Level of Geometry (LOG)	zeigt Sperrzone	300 zur Bewehrungsplanung		
Level of Information (LOI) Name	ARBO-422-12	ARBO-422-12		
Beschreibung	Kragplattenanschluss	Kragplattenanschluss		
Hersteller	F.J. Aschwanden AG	F.J. Aschwanden AG		
Webseite	www.aschwanden.com	www.aschwanden.com		
Material	Nichtrostender Stahl, KWK III; PUR	Nichtrostender Stahl, KWK III; PUR		
Brandschutz	R90	R90		
Statisch tragend	Ja	Ja		
Version	06/2018	06/2018		

Digitale Bewertung dieses Fachevents

Digitale Dienstleistungen von Aschwanden

Bitte nehmen Sie sich etwas zusätzliche Zeit um Fragen zu BIM / Digitalisierung zu beantworten!

Herzlichen Dank!

RINO®

RINO System: Zur nachträglichen Verstärkung von Flachdecken und Stützen

Prof. Dr. Albin Kenel

Inhalt

- 1. Einleitung / Übersicht
- 2. RINO Check Software
- 3. RINO Exo
- 4. RINO Bar
- 5. RINO Axial
- 6. Kombinationen

1. Einleitung / Übersicht

RINO – das Verstärkungs- und Ertüchtigungs-Programm!

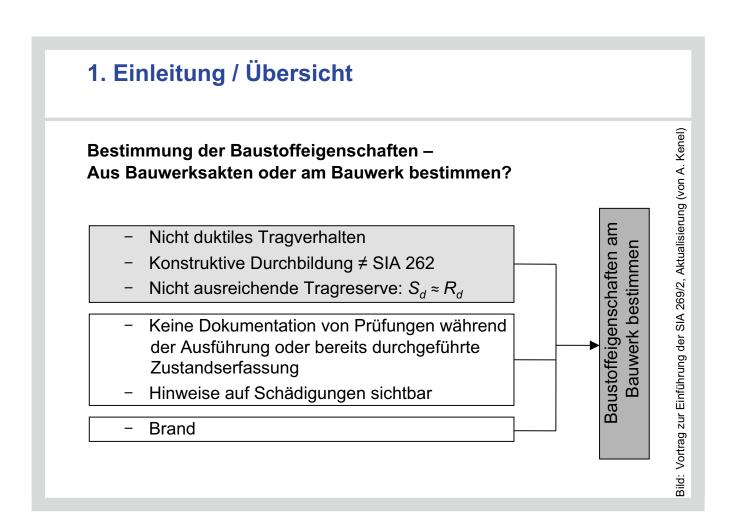
RINO Check Software → Durchstanzüberprüfung / Erhaltung

RINO Exo → externer Stahlpilz

RINO Bar → Durchstanzbewehrung

RINO Axial → Zusatzbügel für Stützen

1. Einleitung / Übersicht


RINO – das Verstärkungs- und Ertüchtigungs-Programm!

- Aschwanden ist der kompetente Ansprechpartner bei Überprüfungen und Verstärkungen
- Aschwanden hat die Hilfsmittel (RINO Check Software) zur Überprüfung bei Erhaltungsprojekten und die Erfahrung bei der Datenerhebung
- Aschwanden hat die Produkte zur Verstärkung und die Erfahrung beim Einbau
- Aschwanden kann auf komplexe Anforderungen mit projektspezifischen Verstärkungsmassnahmen reagieren

1. Einleitung / Übersicht

Umfang der Untersuchungen Die vier typischen Überprüfungssituationen

Tragverhalten	Mit Ingenieurplänen	Ohne Ingenieurpläne	
Nicht duktil	 Visuelle Untersuchung Aktualisierung der mechanischen Eigenschaften 	 Visuelle Untersuchung Aktualisierung der mechanischen Eigenschaften Sondierungen 	
duktil	Visuelle Untersuchung	Visuelle UntersuchungSondierungen	

Tab.: Dokumentation D 0226, Tragsicherheit von Einstellhallen, SIA, 2008

2. RINO Check Software

Software zur Unterstützung der Überprüfung bei Erhaltungsprojekten!

- Ist eine Durchstanzsoftware für Erhaltungsprojekte bzw. der Überprüfung und berücksichtigt:
 - aktualisierte Betondruckfestigkeit zwischen den normierten Klassen
 - aktualisierte Stahlqualität (ohne Umrechnung der Stabdurchmesser)
 - verschiedene Bewehrungen im selben Stützstreifen
- Dient dem Projektierenden auch zur Planung der Sondierung (Verankerungslängen der Biegebewehrung)
- Ist etabliert, wird aber zu wenig genutzt!

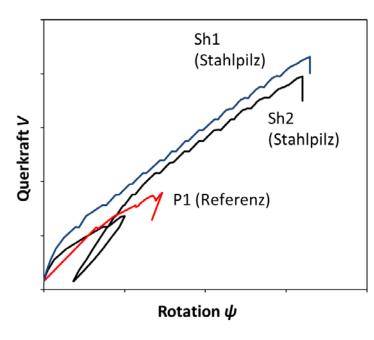
3. RINO Exo

Aus TEC21 17/2016 und 18-19/2016

Schweizerische Bauzeitung

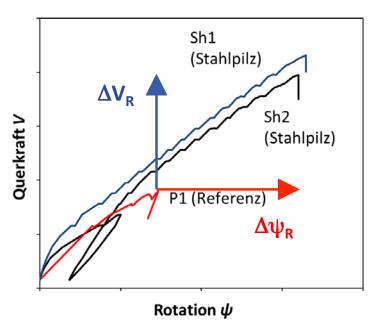
espazium

TEC21

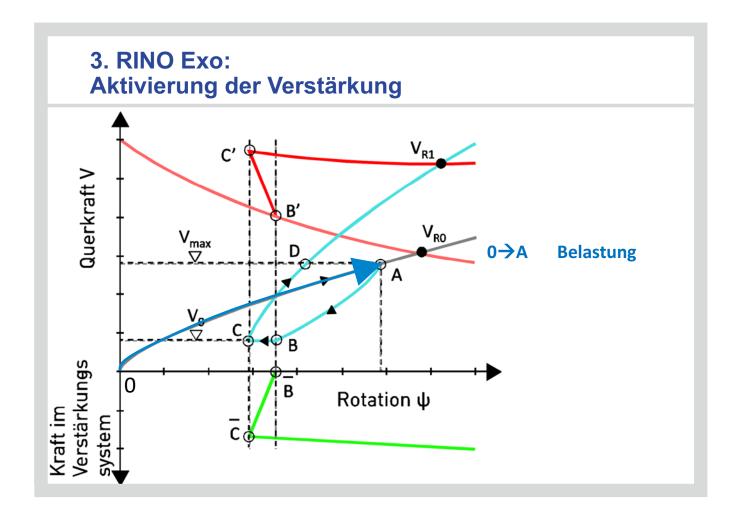

Im Markt etabliert!

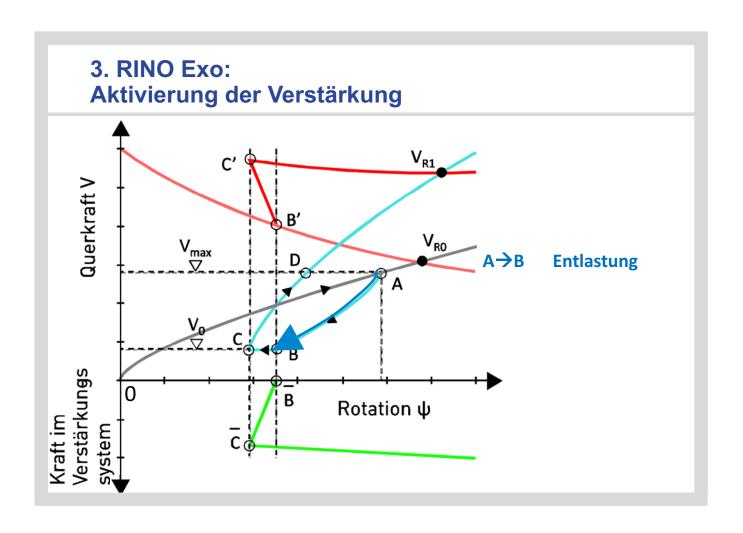
- Viele Projekte erfolgreich ausgeführt
- Grosse Vielfalt von Konstruktionen
- Vorspannung ist zentral!
- Idee wird (teilweise) kopiert

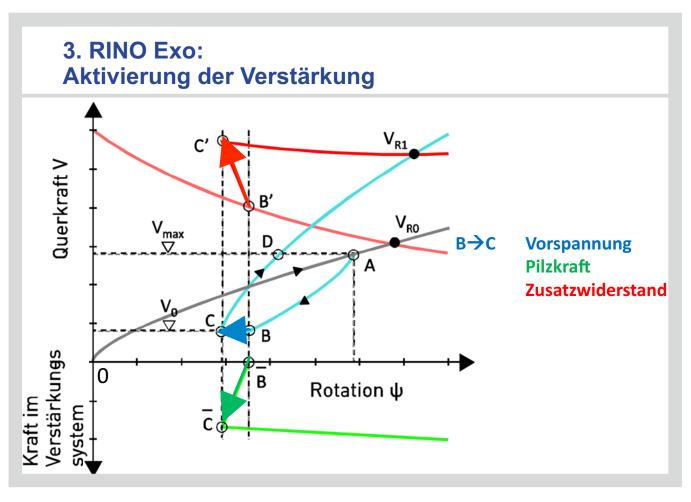
- SONDERDRUCK
Durchstanzen im Bestand

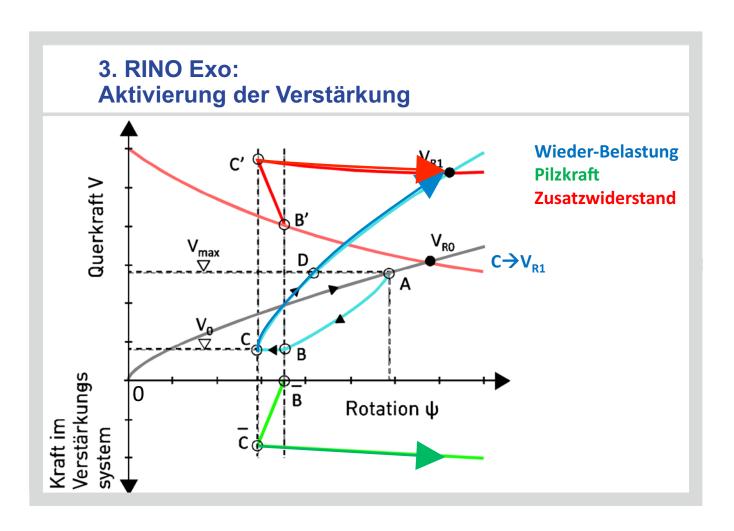

Modellbildung des Rotationsverhaltens bestehender Flachdecker

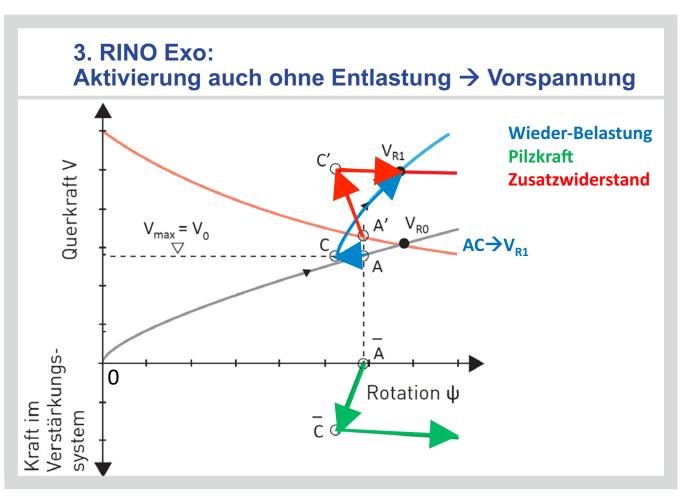
3. RINO Exo Berücksichtigung der Verformungsgeschichte

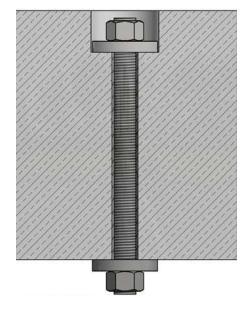



- Eine (vollständige) Entlastung führt zu bleibenden Verformungen
- Die Steifigkeiten mit und ohne Entlastung sind in etwa gleich
- Die Zusatzverformung bleibt bestehen
- Der Durchstanzwiderstand wird durch Ent- und Wiederbelastung beeinflusst
- Die Verformungsgeschichte ist bemessungsrelevant

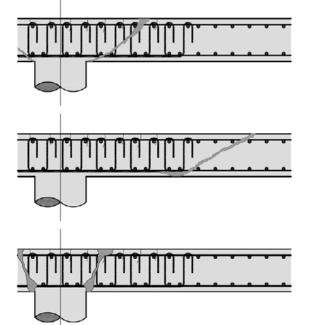

3. RINO Exo Steigerung von Widerstand und Verformung




- Der Durchstanzwiderstand kann **mehr als +100**% gesteigert werden
- Die Bruchverformung kann mehr als +100% gesteigert werden
- Zum Vergleich:
 mit nachträglichen Ankern
 kann Durchstanzwiderstand
 ca. +40...50% gesteigert
 werden



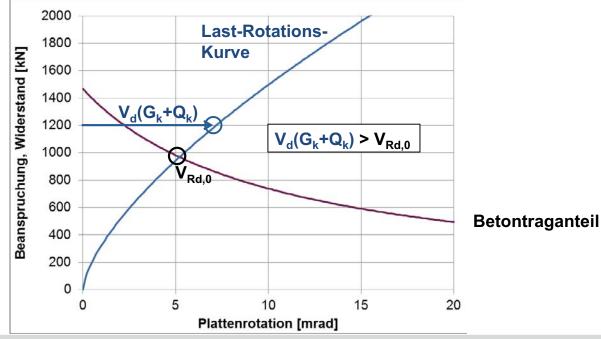
4. RINO Bar: Produkt


Schnitt, mit versenkter Ankerplatte oben Darstellung einer möglichen Anordnung

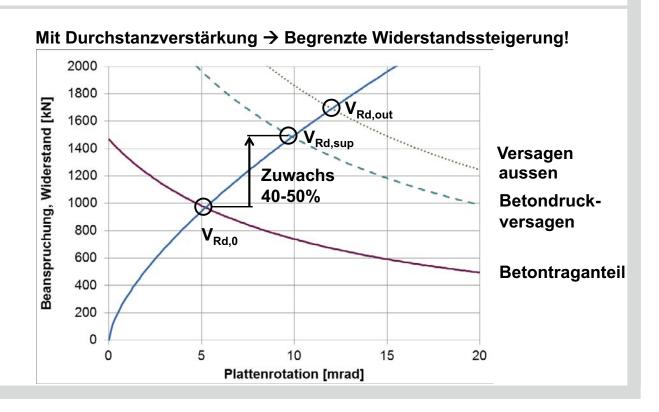
4. RINO Bar: Sondierung des Bestands

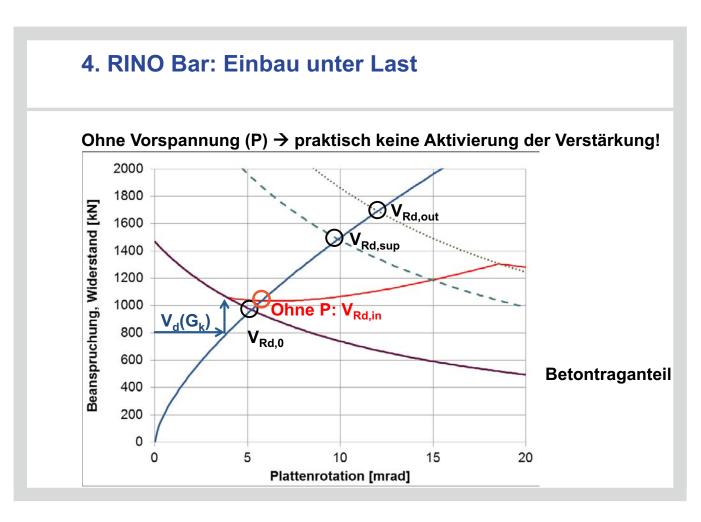
4. RINO Bar: Bruchmechanismen Nachweiskonzept / Modell: SIA 262:2013

Die Bruchmechanismen bleiben gleich wie beim Neubau!

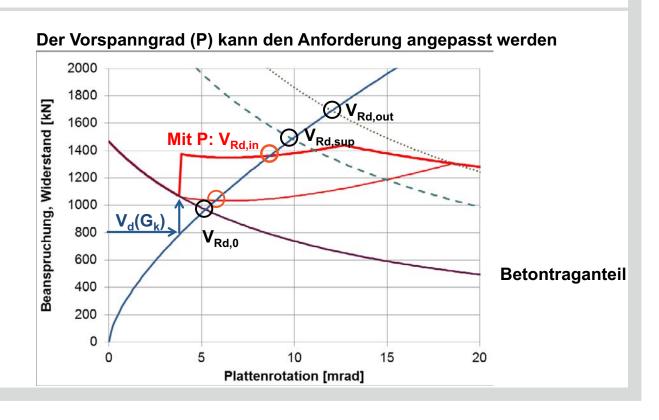

Durchstanzen im Bereich der Durchstanzbewehrung: $\rightarrow \mathbf{V}_{\mathsf{Rd,in}}$

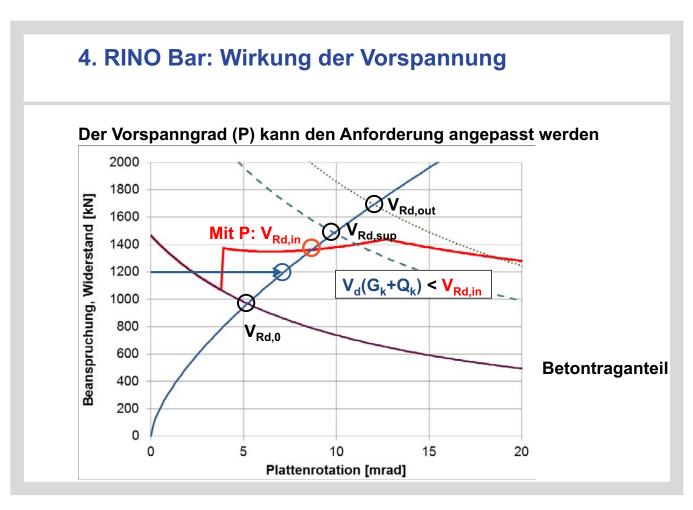
Durchstanzen ausserhalb der Durchstanzbewehrung: → V_{Rd,out}


Betondruckversagen im Bereich der Stütze: $\rightarrow V_{Rd,sup}$


4. RINO Bar: Erhaltungssituation

Ungenügender Durchstanzwiderstand




4. RINO Bar: Weitere Bruchmechanismen

4. RINO Bar: Wirkung der Vorspannung

4. RINO Bar

- -Die Methode ist erprobt
- Die Vorspannung der Anker ist zentral (Aktivierung, Schlupf)
- Die vorgängige Sondierung der oberen Bewehrung wird empfohlen;
 eine Trennung einzelner Bewehrungsstäbe hat berechenbaren Einfluss
- Die Einbautoleranzen k\u00f6nnen in der Bemessungssoftware ber\u00fccksichtigt werden
- -Kann auch bei Rand- und Eckstützen eingesetzt werden
- **−Die Verstärkung wird durch V_{Rd.sup} beschränkt**
 - → d.h. eine Vergrösserung des Durchstanzwiderstands ist auf 1.4...1.5 V_{Rd,0} beschränkt

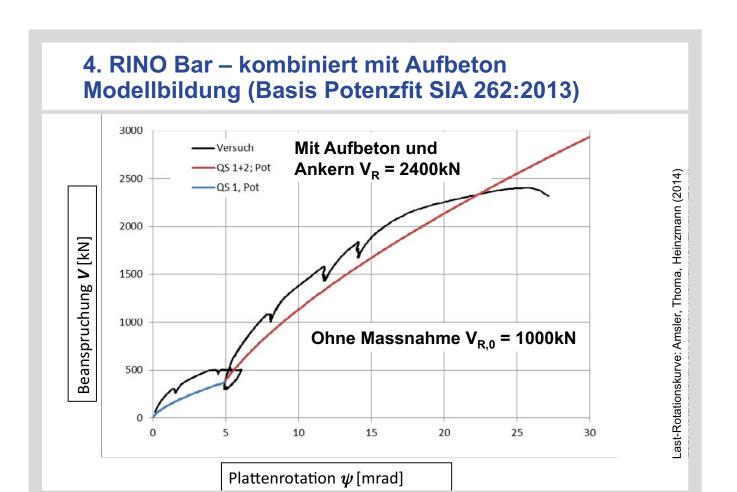
4. RINO Bar – kombiniert mit Aufbeton

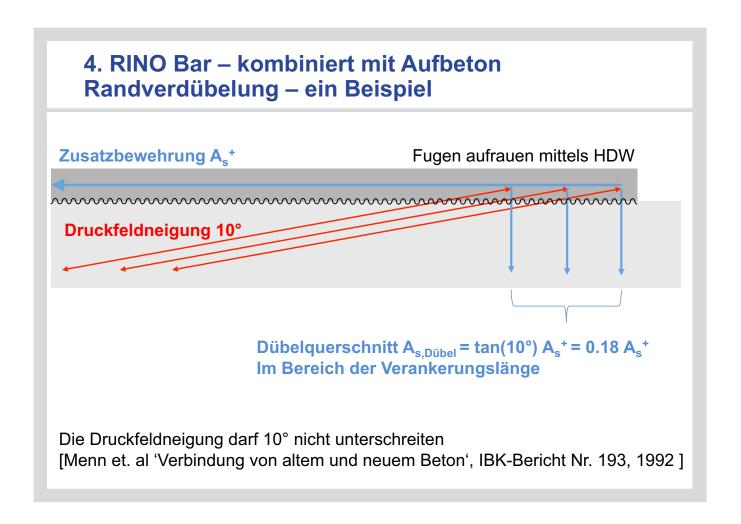
Anwendungsbereich

Kann erforderlich werden falls:

- Eine Verstärkung mit RINO Exo nicht funktioniert
 - Lichtraumprofil unten nicht verfügbar
 - zu kurze oder zu schwache Biegebewehrung oben
- Eine Verstärkung mit RINO Bar nicht ausreicht (V_{Rd.sup} massgebend)

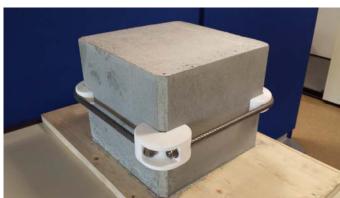
Wirkungen der bewehrten Aufbetonschicht:


- Der Biegewiderstand und die Steifigkeit werden erhöht +
- Die statische Höhe (d und d_v) wird vergrössert +
- Der massgebende Umfang wird vergrössert
- Das Eigengewicht wird vergrössert (Stützen, Fundation)
- Die lichte Raumhöhe wird verkleinert

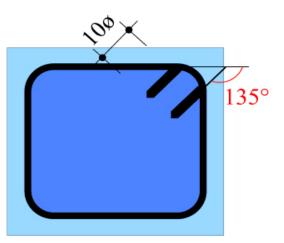

4. RINO Bar – kombiniert mit Aufbeton

Bekanntes Tragverhalten!

- Die Methode ist erprobt
- Der Verbund zwischen 'Alt' und 'Neu' wird mittels Aufrauen sichergestellt (Hochdruckwasserstrahlen)
- Eine Verdübelung der Fuge ist nur im Randbereich erforderlich
- Die Biegebewehrung kann praktisch 'unbegrenzt' vergrössert werden
- Eine Kombination mit RINO Bar führt zu sehr duktilem Tragverhalten;
 die zusätzliche Verdübelung der Fuge ist nicht mehr erforderlich
- Kann bei entsprechender konstruktiver Durchbildung auch bei Rand- und Eckstützen eingesetzt werden



5. RINO Axial: Produkt


Produktidee aus Japan

Prototyp; Aschwanden Die Bügel lassen sich vorspannen

5. RINO Axial: Anwendungen

Stabknicken infolge Verankerungsversagen der Bügel

Anforderung an Bügelverankerung

Bilder: P. Lestuzzi, Dokumentation D 0191, Weiterbildungskurse SIA 2004

5. RINO Axial: Anwendungen

- -Ungenügender, vorhandener Bügelquerschnitt
- -Ausknicken von Stabbündeln

5. RINO Axial

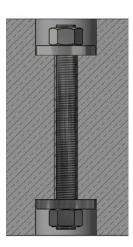
- Behebung der konstruktiven Defizite:
 - Verankerung der Bügel → Wirksamkeit
 - Abstände der Bügel → Knicken der Längsstäbe (Bündel)
 - Querschnitt der Bügel → Steifigkeit der Knickhalterung
 - Anforderungen normal (Hochbau) oder erhöht (Kopf/Fuss bei Erdbeben)
- die externen Bügel stützen die in den Querschnittsecken angeordnete Längsbewehrung
- -Gegen Korrosionsangriff kann vermörtelt werden (oder nichtrostende Ausführung)
- Bei Brandanforderungen ist eine thermische Isolation erforderlich
- –Die Querschnittsabmessungen werden grösser!

6. Kombinationen

	RINO Exo	Aufbeton	RINO Bar	RINO Axial
RINO Exo	I	unwirtschaftlich	Kleinere Pilze Als Ergänzung Duktilität 个	Immer möglich
Aufbeton	unwirtschaftlich	_	Kurze Verankerung V _{Rd,sup} ungenügend Duktilität 个	Immer möglich
RINO Bar	Kleinere Pilze Als Ergänzung Duktilität 个	Kurze Verankerung V _{Rd,sup} ungenügend Duktilität 个	_	Immer möglich
RINO Axial	Immer möglich	Immer möglich	lmmer möglich	_

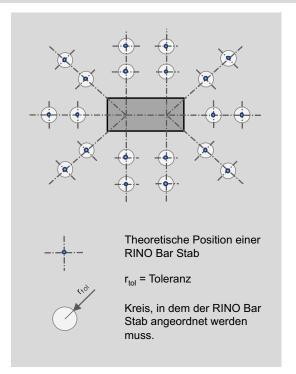
RINO- Anwendungen aus der Praxis

Stefan Walt

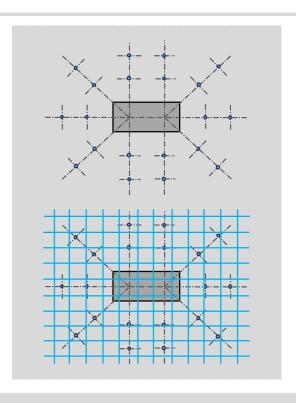

RINO Bar

Vorgespannte Gewindestangen für die nachträgliche Erhöhung des Durchstanzwiderstandes

Mögliche Erhöhung: bis ca. 40 %



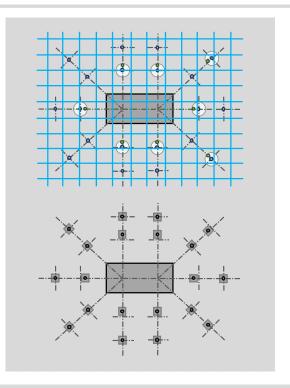
RINO Bar - Einbau-Toleranz


- Bei der Verstärkung einer bestehende Platte werden alle statischen Elemente (Beton, Armierung, etc.) maximal ausgenutzt.
- Es ist daher äusserst wichtig, die obere Bewehrung bei einer Durchstanzverstärkung nicht zu beschädigen.
- Eine Einbautoleranz ist daher in das Layout des RINO Bar Systems berücksichtigt.

RINO Bar – Verlegevorschriften

 Theoretische Position der RINO Bar Stäbe auf der Decke einzeichnen.

Orten und anzeichnen der obere Bewehrung auf der Decke.



RINO Bar – Verlegevorschriften

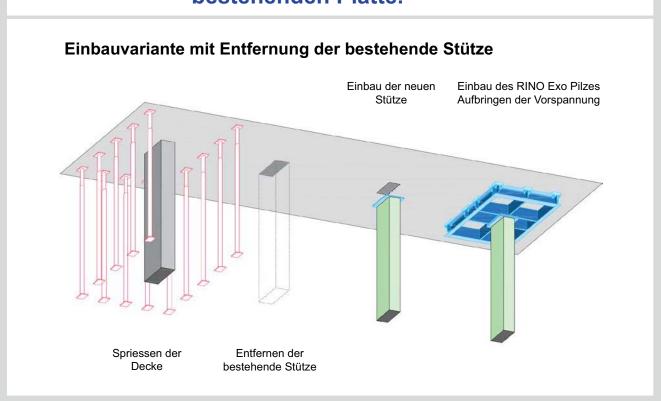
3. Für die RINO Bar Stäbe, die mit der oberen Bewehrung kollidieren, wird die Position angepasst.

 Montage des RINO Bar System (Kernbohrung, einsetzen der RINO Bar Stäbe, aufbringen der Vorspannung)

RINO Bar - Beispiel aus der Praxis

RINO Exo

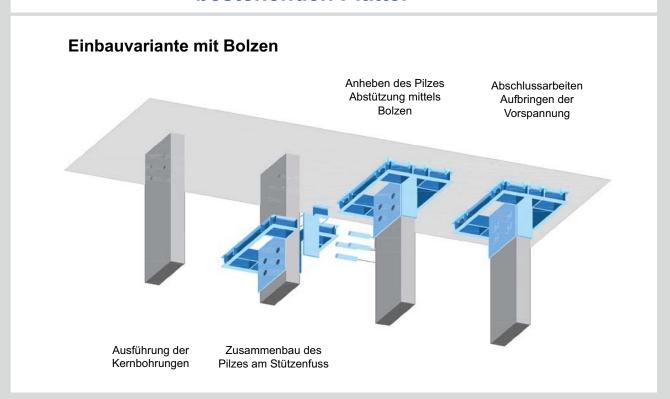
Vorgespannte externe Stahlpilze für die nachträgliche Erhöhung des Durchstanzwiderstandes


Mögliche Erhöhung : bis ca 100 %

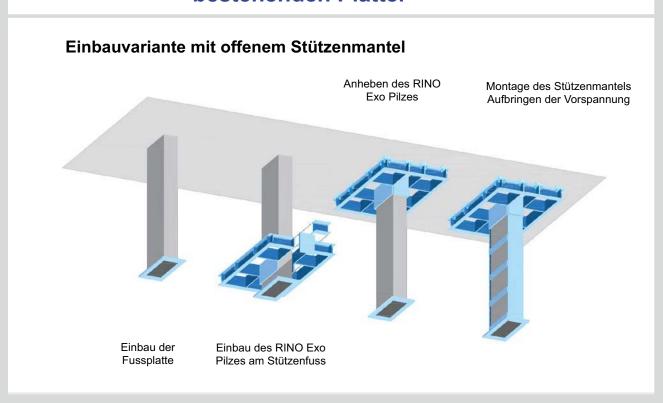
RINO Exo – Ausführung mit Abspriessung der bestehenden Platte.

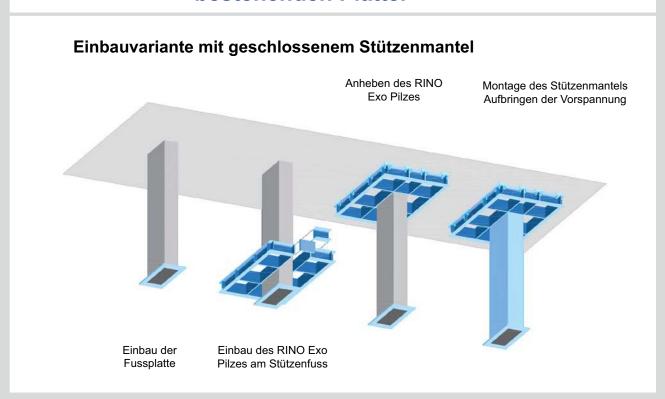
Einbauvariante mit geschnittenen Stützenkopf Einbau des RINO Exo Pilzes Schliessung der Pilzkragen Verfüllen mit Mörtel Aufbringen der Vorspannung Spriessen der Decke Entfernen der Stützenkopf

RINO Exo – Ausführung mit Abspriessung der bestehenden Platte.

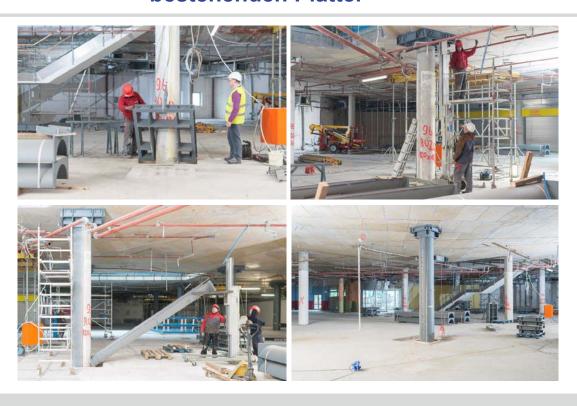


RINO Exo – Ausführung ohne Abspriessung der bestehenden Platte.





RINO Exo – Ausführung ohne Abspriessung der bestehenden Platte.


RINO Exo – Ausführung ohne Abspriessung der bestehenden Platte.

RINO - Speziallösungen

RINO - Schlusswort

➤ Es ist unser Ziel, Lösungen zu entwickeln, die am Besten den Kundenbedürfnissen entsprechen. Dies machen wir in enger Zusammenarbeit mit Ihnen.

ARBO®

ARBO Kragplattenanschluss Anforderungen an den Feuerwiderstand und das Brandverhalten von Kragplattenanschlüssen

Dr. Stefan Lips

Inhalt

- Einleitung/Produktübersicht
- Begriffe
- Anforderungen
- Brandversuche

Einleitung – Produktübersicht ARBO-Typen

ARBO-300 Für kleine Auskragungen

ARBO-400

ARBO-400Plus Mit erhöhter Wärmedämmung

ARBO-500

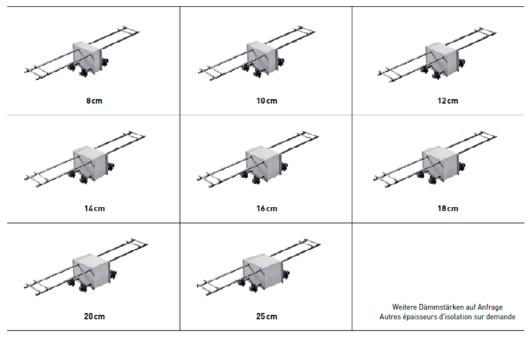
ARBO-500Plus Mit erhöhter Wärmedämmung

Einleitung – Produktübersicht ARBO-Typen

ARBO-600

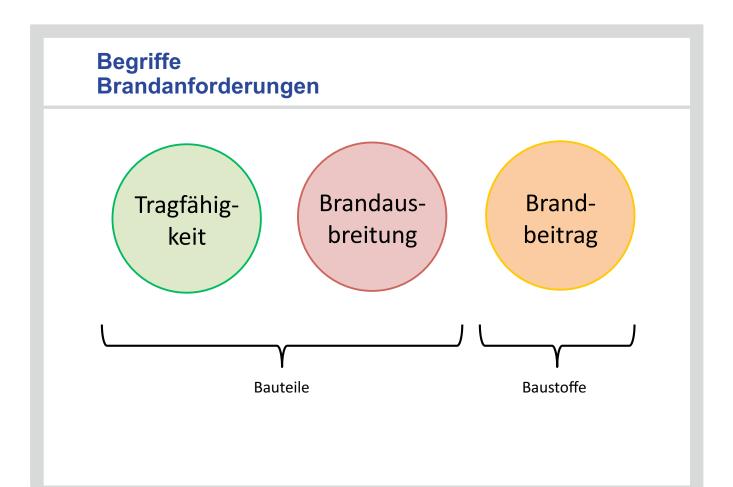
ARBO-600Plus Mit erhöhter Wärmedämmung

ARBO Silent-700 Mit Trittschalldämmung



ARBO-800 Bei abgestuften Platten

Einleitung – Produktübersicht Dämmstärken


Dämmstärken von 8 cm bis 25 cm

ARBO-RF

ARBO RF Elemente erreichen bis zu einer Dämmstärke von 240 mm eine Feuerwiderstandsklasse von REI 120. Sie sind komplett mit Baustoffen der Klasse RF1 erstellt.

Begriffe Bauteile

Als Bauteile gelten alle Teile eines Bauwerks, an deren Feuerwiderstand Anforderungen gestellt werden.

Klassifizierung: REI

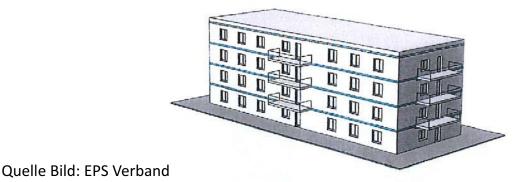
R : Tragfähigkeit (résistance)
 E : Raumabschluss (étanchéité)
 I : Wärmedämmung (im Brandfall) (isolation thermique)

Begriffe Baustoffe

Als Baustoffe gelten alle für die Herstellung von Bauten, Anlagen und Bauteilen sowie für den Ausbau verwendeten Materialien, an deren Brandverhalten Anforderungen gestellt werden.

Brandverhalten von Baustoffen (réaction au feu):

- RF1 : kein Brandbeitrag


RF2 : geringer BrandbeitragRF3 : zulässiger Brandbeitrag

- RF4: unzulässiger Brandbeitrag

Begriffe Brandriegel

Brennbare Aussenwandbekleidungen und / oder Wärmedämmungen sind konstruktiv so zu unterteilen, dass sich ein Brand an der Aussenwand vor dem Löschangriff durch die Feuerwehr um nicht mehr als zwei Geschosse oberhalb des Brandgeschosses ausbreiten kann.

➤ Anordnen einer Schicht, welche die Brandausbreitung verhindert (Brandriegel).

Anforderungen an Tragfähigkeit Balkon

Im Normalfall gelten für Balkone keine Anforderungen an die Tragfähigkeit im Brandfall.

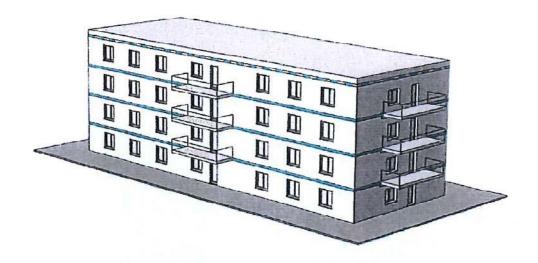
Balkone, tragen in der Regel nur sich selber und haben somit keine tragende oder stabilisierende Wirkung für die Gesamtstruktur. Deshalb werden an Balkone, welche nicht als Fluchtweg vorgesehen sind unabhängig von der Gebäudehöhe üblicherweise keine speziellen Brandschutzanforderungen an die Tragfähigkeit gestellt.

Anforderungen an Tragfähigkeit Fluchtweg (Laubengang)

Bei Laubengängen (Fluchtwege) wird maximal eine Brandwiderstandsdauer von R30 verlangt (VKF Richtlinie 16-15 Artikel 2.5.4 Absatz 5 bzw. 6).

2.5.4 Laubengänge

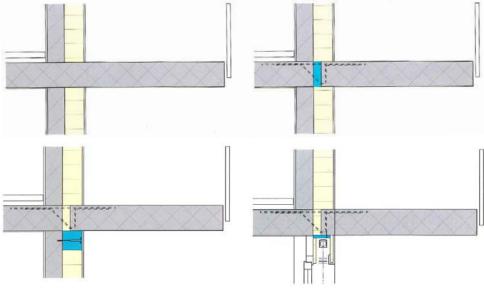
- 1 <u>Laubengänge</u> sind bis zu vertikalen Fluchtwegen zu führen und aus Baustoffen der RF1 zu erstellen. Lineare, tragende Bauteile dürfen aus brennbaren Baustoffen erstellt werden.
- 2 Laubengänge müssen mindestens zur Hälfte gegen das Freie ständig offen sein. Die Öffnungen müssen gleichmässig verteilt und unverschliessbar sein.
- 3 Bei Türen und Fenster werden keine Anforderungen an den Feuerwiderstand gestellt.
- 4 Die horizontale Fluchtweglänge ist bei Laubengängen einzuhalten.
- 5 Führen Laubengänge zu einem vertikalen Fluchtweg sind die Laufflächen mit 30 Minuten Feuerwiderstand zu erstellen und feuerwiderstandsfähig an die Aussenwand anzuschliessen. Aussenwandbekleidungen müssen aus Baustoffen der RF1 bestehen.
- 6 Führen Laubengänge an beiden Enden zu vertikalen Fluchtwegen, gelten keine Anforderungen an den Feuerwiderstand der Konstruktion (z.B. Gitterrost). Aussenwandbekleidungen dürfen aus brennbaren Baustoffen bestehen.


Anforderungen an Tragfähigkeit Tragwerke (Stützen, Decken, etc.)

Gebäudehöhe	< 11 m	11 - 30 m	30 - 100 m
 Wohnen, Büro, Schulen Verkaufsräume (< 300 Personen) Parking Industrie und Gewerbe (Brandbelastung < 1000 MJ/m²) 	R30 (k.A.)	R60 (R30)	R90 (R60)
• Industrie und Gewerbe (Brandbelastung > 1000 MJ/m²)	R60 (R30)	R90 (R60)	R120 (R90)
 Beherbergungsbetriebe (Hotels, Spitäler, etc.) Räume mit grosser Personenbelegung Verkaufsgeschäfte 	R60 (R30)	R60 (R30)	R90 (R60)

In Klammern: mit Löschanlagenkonzept

Anforderungen an Brandausbreitung


Falls die Wärmedämmung aus brennbaren Materialen besteht, muss bei jedem Geschoss ein Brandriegel angeordnet werden.

Quelle Bild: EPS Verband

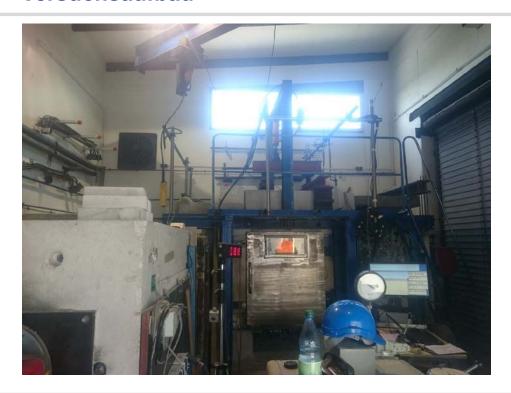
Anforderungen an Brandausbreitung

Der Brandriegel muss aus nicht-brennbaren Material bestehen <u>oder</u> den <u>Anforderungen REI30</u> genügen.

Quelle Bild: EPS Verband

Anforderungen ans Brandverhalten

3.2.8 Anforderungen an das Brandverhalten von Aussenwandbekleidungssystemen


RF1 RF2		Gebäude geringer Höhe		Gebäude mittlerer Höhe		Hochhäuser							
RF3 cr = Baustoffe mit "kritis Verhalten" sind anv		Klassifiziertes System	Aussenwand- bekleidung	Wärmedämmschicht, Zwischenschicht	Lichtbänder	Klassifiziertes System	Aussenwand- bekleidung	Wärmedämmschicht, Zwischenschicht	Lichtbänder	Klassifiziertes System	Aussenwand- bekleidung	Wärmedämmschicht, Zwischenschicht	Lichtbänder
Beherbergungs	Bauliches Konzept		cr				cr [2]						
betriebe [a]	Löschanla- genkonzept		cr				cr						
Bauliches Konzept		cr [1]	cr	cr		cr [1] [2]	cr [2]	cr [2]					
Übrige Nutzungen	Löschanla- genkonzept	cr [1]	cr	cr		cr [1]	cr	cr					

Anforderungen ans Brandverhalten

Beschluss-Sammlung der Fachkommission Bautechnik für EN-normierte Baustoff- und Bauteilprüfungen

1.38 Kragplattenanschlüsse mit Feuerwiderstand ohne brandabschnittsbildende Funktion, welche brennbare Baustoffe enthalten, dürfen im Bereich der Aussenwandkonstruktion bei allen Gebäudehöhen (inkl. Hochhäuser) eingesetzt werden. Der Feuerwiderstand muss mindestens REI 30 aufweisen. Sie erhalten im Anwendungstext einen entsprechenden Hinweis.

Brandprüfung Versuchsaufbau

Brandprüfung Versuchsaufbau

Brandprüfung Brandraum nach 11 Minuten

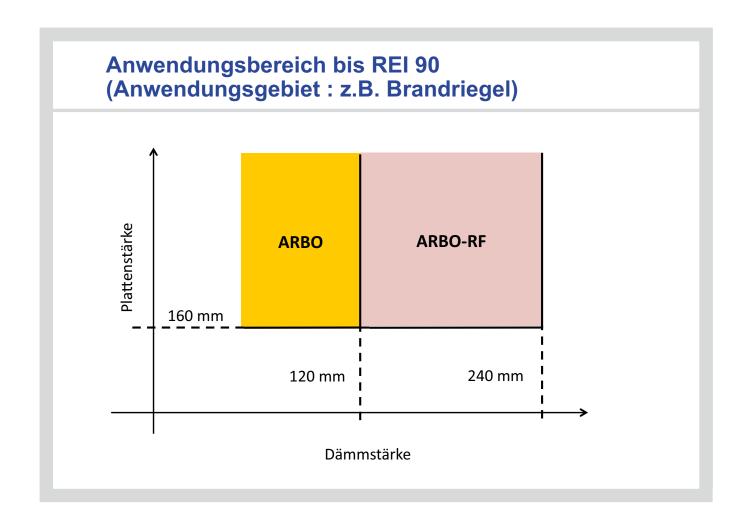
Brandprüfung Oberfläche nach 90 Minuten (ARBO)

Brandprüfung Brandraum nach 120 Minuten (ARBO-RF)

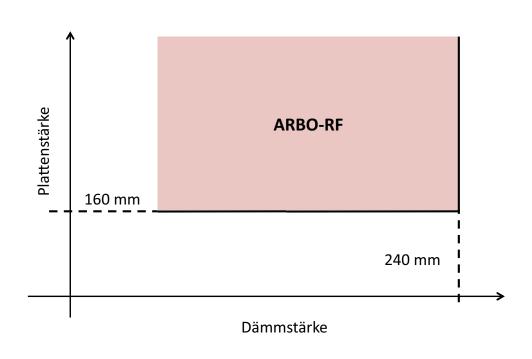
Brandprüfung Oberfläche nach 120 Minuten (ARBO-RF)

Brandprüfung Resultate

Tabelle 3 Übersicht über die Leistungskriterien in Anlehnung an DIN EN 1363-1:2012 10 und DIN EN 1365-2:2015 02 sowie DIN EN 1366-4:2010 08


Probekörper		Leistungskriterien			Messwerte nach 90 Minuten		
Ausrichtung	Art des Verbindungselements	Trag- fähigkeit 1)	Raum- abschluss	Wärme- dämmung	Maximale Verformung [mm]	Maximale Temperatur [K]	
horizontal	ARBO-416	>92	>92	92	-6 (WS3)	72 (OF1)	

	Probekörper	Leistungskriterien			Messwerte nach 120 Minuten		
Ausrichtung	Art des Verbindungselements	Trag- fähigkeit 1)	Raum- abschluss	Wärme- dämmung	Maximale Verformung [mm]	Maximale Temperatur [K]	
horizontal	ARBO- 416-RF	>120	>120	>120	-8 (WS3)	90 (OF15)	


Öffentlicher Ergebnisbericht

Anwendungsbereich RF1 (oder REI90-REI120) (Anwendungsgebiet : Innenseitig Hochhäuser)

Zusammenfassung

ARBO Elemente

Sind bei Balkonen (auch bei Brandriegel) und Laubengängen bis eine Dämmstärke von 120 mm anwendbar

ARBO-RF Elemente

Sind überall bis eine Dämmstärke von 240 mm anwendbar

Der Feuerwiderstand wurde anhand von Versuchen bestimmt, dabei wurde auch die Fuge zwischen den Elementen getestet

Fachreferat mit Kapitel Brand und Ergebnisberichte der Brandversuche sind auf der Webseite publiziert.

Dokumente Bezüglich Brand

VKF http://www.praever.ch/de/bs/vs/Seiten/default.aspx:

Brandschutznorm

Brandschutzrichtlinien

Brandschutzhilfen

Beschluss-Sammlung der Fachkommission Bautechnik für EN-normierte Baustoff- und Bauteilprüfungen

EPS Verband

Brandschutzmassnahmen für verputzte Aussenwärmedämmung (VAWD)

ORSO®

ORSO-V Stahl-/Betonverbundstützen: Branduntersuchung und neues Bemessungsmodell

Prof. Dr. Albin Kenel / Dr. Stefan Lips

Inhalt

- ORSO-V Stützen im Brandversuch
- Temperaturfeldberechnung
- Tragwiderstand
- Knicklänge im Brandfall
- Einwirkungen im Brandfall
- Validierung des Bemessungsmodells

Branduntersuchung

- Versuchsprogramm
 - 6 unbelastete Brandversuche
 - 6 belastete Brandversuche
 - Betonuntersuchung zur Bestimmung des Feuchtegehalts
- Numerische Untersuchung
 - Vergleich 3D FE-Modell mit Versuchen
 - Vergleich 3D FE-Modell mit EC-4
 - Vergleich 3D FE-Modell mit NLFEA (Aschwanden)

Branduntersuchung Versuchsprogramm

Unbelastete Brandversuche

→ Durchwärmversuche zur Validierung der instationären Temperaturfeldberechnungen

Form	Abmessung	Bewehrung / Stahlkern	Länge
Rechteck	200 x 400 mm	1 x ø110 mm	1.51 m
Kreis	ø355.6 mm	1 x ø160 mm	1.51 m
Quadrat	250 x 250 mm	6 x ø30 mm	1.51 m
Quadrat	400 x 400 mm	10 x ø40 mm	1.51 m
Rechteck	250 x 450 mm	6 x ø30 mm	1.51 m
Kreis (Inox)	ø219 mm	6 x ø30 mm	1.51 m

Branduntersuchung Versuchsprogramm

Belastete Brandversuche

→ Bruchversuche zur Validierung der Widerstandsberechnungen

Form	Abmessung	Bewehrung / Stahlkern	Länge	N_{test}/N_{Rdkalt}
Quadrat	250 x 250 mm	6 x ø30 mm	3.63 m	53%
Rechteck	200 x 300 mm	6 x ø30 mm	3.63 m	70%
Kreis (Inox)	ø219 mm	1 x ø100 mm	3.63 m	50%
Kreis	ø324 mm	6 x ø30 mm	3.63 m	62%
Rechteck	150 x 250 mm	1 x ø100 mm	3.63 m	70%
Quadrat	180 x 180 mm	1 x ø110 mm	3.63 m	70%

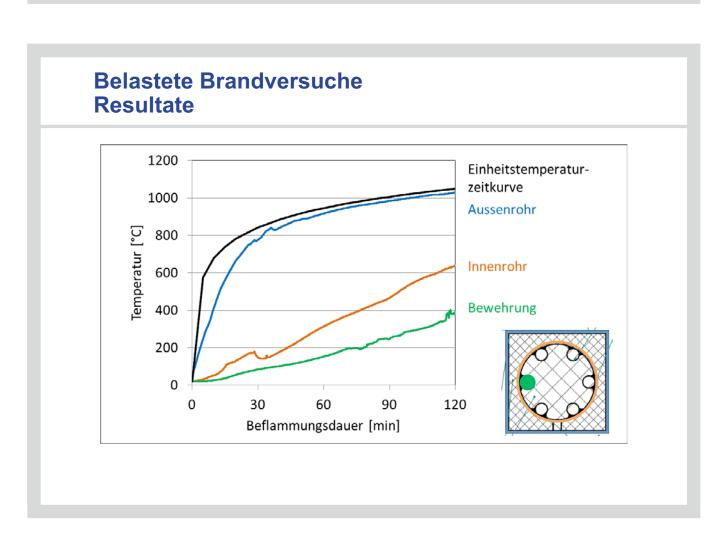
Belastete Brandversuche

Thermoelemente am Stahlkern verteilt über den Querschnitt und verteilt über die Stützenhöhe

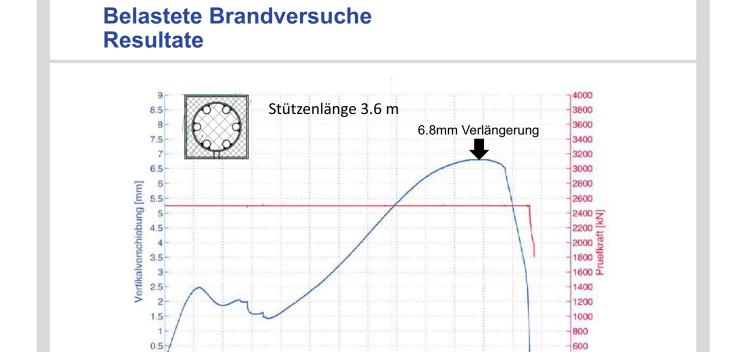
Belastete Brandversuche

Brandofen der BAM:

- Prüfraum für Elemente 1.8m / 3.6m / 5.4m
- Prüflast bis 5MN
- Tangential angeordneteBrenner
- Sehr aufwendige Messund Steuerungstechnik


Belastete Brandversuche

Belastete Brandversuche



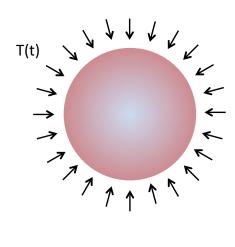
Knickform der Stütze

Belastete Brandversuche Resultate

Form	Abmessung	N _{test} /N _{Rdkalt}	Versuch
Quadrat	250 x 250 mm	53%	125 min
Rechteck	200 x 300 mm	70 %	72 min
Kreis (Inox)	ø219 mm	50 %	137 min
Kreis	ø324 mm	62%	142 min
Rechteck	150 x 250 mm	70%	64 min
Quadrat	180 x 180 mm	70%	37 min

50 60 70 80 90 Beflammungsdauer [min]

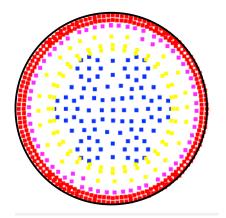
-0.5

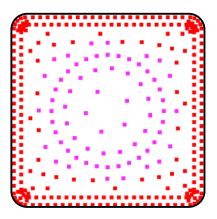

Belastete Brandversuche Erkenntnisse und Resultate

- Wärmeverteilung innerhalb Querschnitt
- Tragwiderstand bzw. Brandwiderstandsdauer
- Stützenverhalten/Verformung im Brandzustand

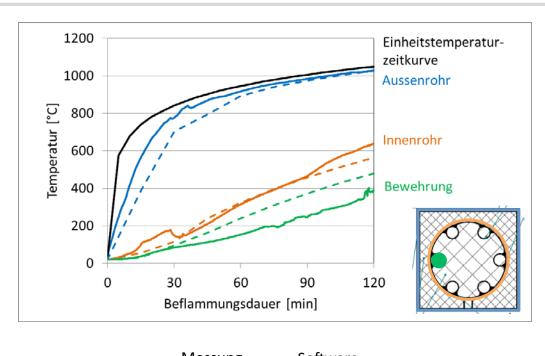
Wärmeverteilung innerhalb Querschnitt Modellierung

Finite Element Modellierung

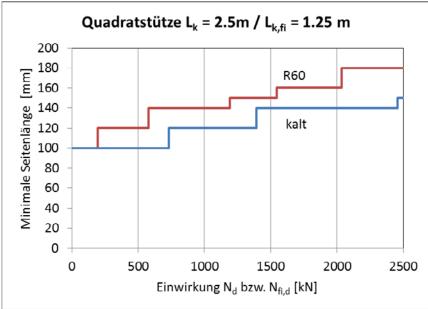

Für die Berechnung von Temperaturfeldern sind instationäre Wärmeberechnungen (auf der Basis bekannter thermischer Materialeigenschaften) notwendig



Wärmeverteilung innerhalb Querschnitt Modellierung


Die Aschwanden Bemessungssoftware berechnet die Temperaturfelder unter Berücksichtigung der verschiedenen Materialeigenschaften:

- Aa Aussen- / Innenrohr und Stahlkern
- A_s Bewehrung
- A Beton


Wärmeverteilung innerhalb Querschnitt Vergleich Versuch/Software

— Messung – – – Software

Tragwiderstand

ORSO-V Stützen zeichnen sich durch hohe Leistungsfähigkeit bei geringen Abmessungen aus:

Tragwiderstandsberechnung

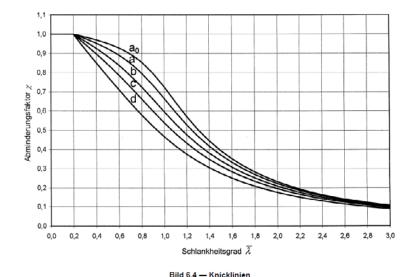
- Bemessungssituationen
 - Hochbau
 - Anprall
 - Brand
- Einwirkungssituation
 - Annähernd zentrisch belastet
 - Exzentrisch belastet (z.B. Kopf- und Fussmomente)
- Mögliche Bemessungsmethoden
 - Vereinfachte Verfahren gemäss Norm (SIA 264 / Eurocode EC 4)
 - Allgemeine Berechnungsverfahren (Nichtlineare Finite Element Berechnung NLFEA)

Kaltbemessung – SIA 263 & 264 bzw. EC 3 & 4 Annähernd zentrisch belastet

Tragsicherheitsnachweis:

$$|N_d| \le |N_{Rd}|$$

Nachweis für annähernd zentrisch belastete Stützen (SIA 264:2014 Ziffer 5.3.2)


$$N_{Rd} = \chi_K \cdot N_{pl,Rd}$$

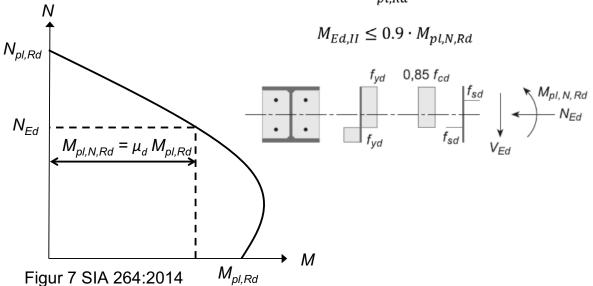
 χ_{K} : Abminderungsfaktor für Knicken gemäss Norm SIA 263:2013

 $N_{pl,Rd}$: Bemessungswert des plastischen Normalkraftwiderstandes

$$N_{pl,Rd} = A_a \cdot \frac{f_y}{\gamma_a} + A_c \cdot \frac{1.0 f_{ck}}{\gamma_c} + A_s \cdot \frac{f_{sk}}{\gamma_s}$$

Kaltbemessung – SIA 263 & 264 bzw. EC 3 & 4 Annähernd zentrisch belastet

$$\bar{\lambda} = \sqrt{\frac{N_{pl,Rk}}{N_{cr}}}$$


$$N_{cr} = \frac{\pi^2 \cdot EI}{l_{cr}^2}$$

Berechnung benötigt folgende Querschnittsdaten:

- $N_{pl,Rd}$
- $N_{pl,Rk}$
- FÍ

Kaltbemessung – SIA 263 & 264 bzw. EC 3 & 4 Druck mit Biegung

Nachweis für Druck mit Biegung $M_{Ed,II} \leq 0.9 \cdot \mu_d \cdot M_{pl,Rd}$ $\rightarrow \text{M-N Interaktions diagramm} \qquad \mu_d = \frac{M_{pl,N,Rd}}{M_{pl,Rd}}$ N

Kaltbemessung – NLFEA

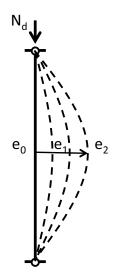
Kraft F = Steifigkeit $K \cdot \text{Verformung } U$

$$\{F\}=[K]\{U\}$$

{F}: Abhängig von {U}

→ Geometrische Nichtlinearität

[K]: Abhängig von {U}


→ Material-Nichtlinearität

Iteratives Lösen der Gleichung

$$\{F\} = [K]\{U\}$$

Kaltbemessung – NLFEA Geometrische Nichtlinearitäten

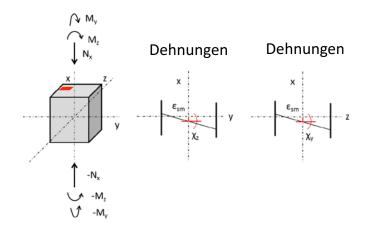
e₀ = Anfangsauslenkung (Imperfektion)

e₁ = Exzentrizität infolge Einwirkungen 1. Ordnung

e₂ = Verformungen infolge Einwirkungen 2. Ordnung

$$M_d = M_{0d} + M_{1d} + M_{2d}$$

$$M_d = -N_d \cdot (e_0 + e_1 + e_2)$$


Kaltbemessung – NLFEA Material-Nichtlinearitäten

$$\{\varepsilon_m, \chi_y, \chi_z\} \rightarrow \{N, M_y, M_z\}$$

Direkt lösbar (Integration über QS-Fläche)

$$\{\varepsilon_m, \chi_y, \chi_z\} \leftarrow \{N, M_y, M_z\}$$

Nicht direkt lösbar → Iteratives Vorgehen

Benötigt: Spannungs-/Dehnungsbeziehung für verwendete Materialien

Warmbemessung – EC 3 & 4 Annähernd zentrisch belastet

Tragsicherheitsnachweis:

$$\left| N_{d,fi} \right| \le \left| N_{Rd,fi} \right|$$

Nachweis für annähernd zentrisch belastete Stützen (SIA 264:2014 Ziffer 5.3.2)

$$N_{Rd,fi} = \chi_K \cdot N_{pl,Rd,fi}$$

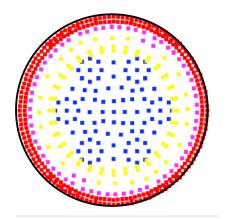
 χ_{K} : Abminderungsfaktor für Knicken gemäss Norm SIA 263:2013

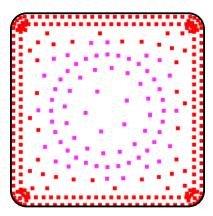
 $N_{pl,Rd}$: Bemessungswert des plastischen Normalkraftwiderstandes

$$N_{pl,Rd,fi} = A_a \cdot \frac{f_{y,\theta}}{\gamma_a} + A_c \cdot \frac{1.0f_{c,\theta}}{\gamma_c} + A_s \cdot \frac{f_{s,\theta}}{\gamma_s}$$

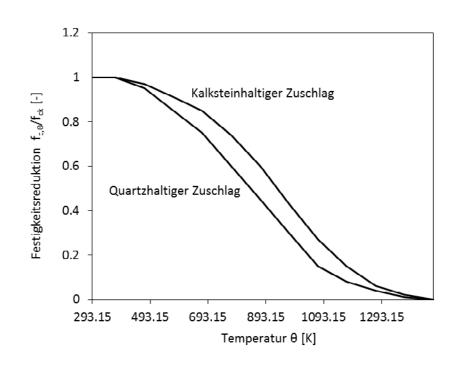
Warmbemessung – EC 3 & 4 Annähernd zentrisch belastet

$$\bar{\lambda} = \sqrt{\frac{N_{pl,Rk,fi}}{N_{cr,fi}}}$$

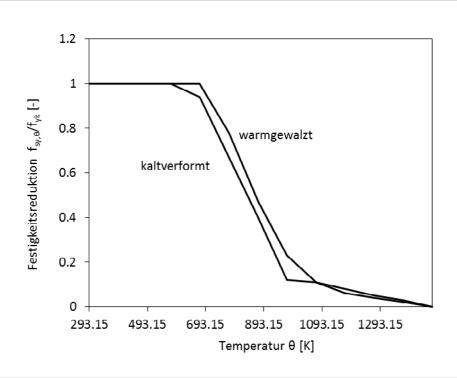

$$N_{cr,fi} = \frac{\pi^2 \cdot EI_{fi}}{l_{cr,fi}^2}$$

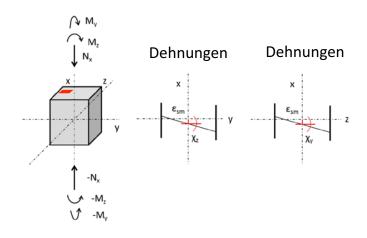

EN Berechnung benötigt folgende Querschnittsdaten:

- $N_{\mathsf{pl},\mathsf{Rd},\mathsf{fi}}$
- N_{pl,Rk,fi}
- El_{fi}


Warmbemessung – EC 3 & 4 Temperaturbestimmung

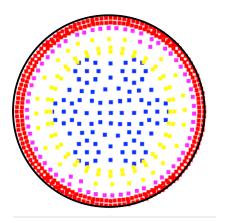
Verwendung der Temperatur zur Bestimmung der temperaturabhängigen Festigkeit und Steifigkeit der Materialien

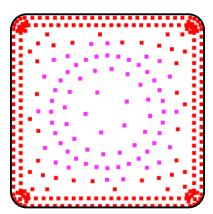



Warmbemessung – EC 3 & 4 Materialfestigkeiten - Stahl

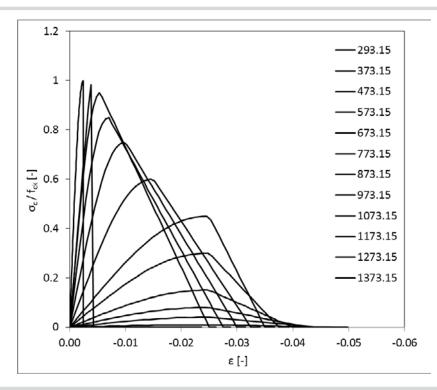
Warmbemessung – NLFEA Materialnichtlinearitäten im Brandfall

$$\left\{\varepsilon_{m}, \chi_{y}, \chi_{z}\right\} \rightarrow \left\{N, M_{y}, M_{z}\right\}$$
$$\left\{\varepsilon_{m}, \chi_{y}, \chi_{z}\right\} \leftarrow \left\{N, M_{y}, M_{z}\right\}$$

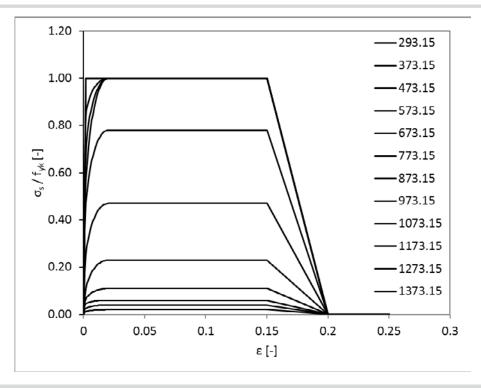

Gleicher Ansatz wie bei der Kaltbemessung

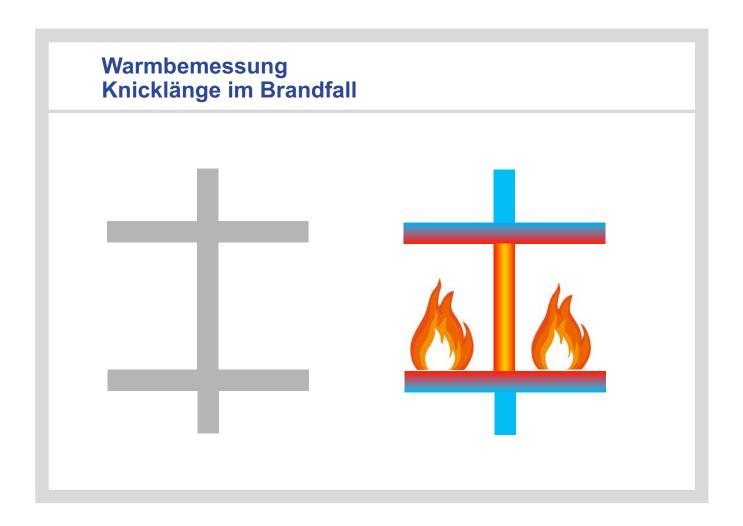


Benötigt: Temperaturfeld und temperaturabhängige Spannungs-/ Dehnungsbeziehung für verwendete Materialien


Warmbemessung – NLFEA Temperaturbestimmung

Verwendung der Temperatur jedes Elementes zur Bestimmung der temperaturabhängigen Spannungs-/Dehnungsbeziehung



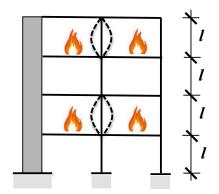


Warmbemessung – NLFEA Spannungs-/Dehnungsbeziehung Beton

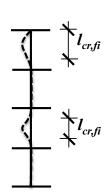
Warmbemessung – NLFEA Spannungs-/Dehnungsbeziehung Stahl

Warmbemessung Knicklänge im Brandfall

Knicklängen bei Feuereinwirkung (SN EN-1994-1-2:2005)

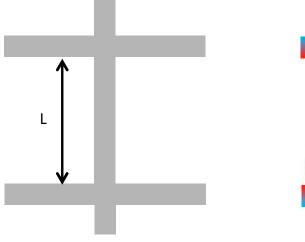

 $-l_{cr,f}$ =0.5·l bei Innenstützen

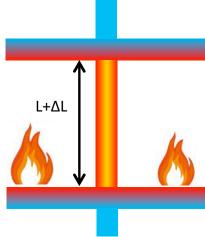
 $-l_{cr,fi}$ =0.7·l bei Innenstützen im obersten Stockwerk $-l_{cr,fi}$ =0.7·l Empfehlung bei Rand- und Eckstützen


 $-l_{cr,fi}$ =1.0·l bei grossvolumigen Konstruktionen (z.B Atriumsgebäude)

in denen sich der Brand ungehindert über mehrere

Stockwerke ausbreiten kann

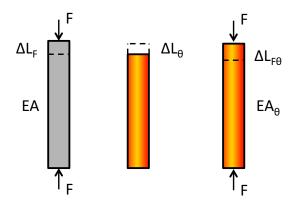




Warmbemessung Einwirkungen im Brandfall

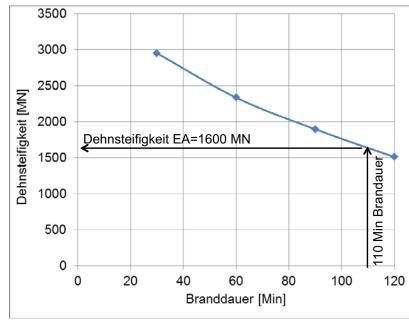
Durch die Wärme dehnt sich die Stütze aus.

Somit können Zwangsschnittkräfte auftreten, die in der Bemessung berücksichtigt werden müssen, vgl. SIA 260:2013 Ziffern 3.3.6.3, 4.2.7 und 4.4.3.7



Es können ebenfalls noch zusätzliche Zwangsschnittkräfte infolge der ungleichmässigen Deckenerwärmung erfolgen

Warmbemessung Einwirkungen im Brandfall


Verformungsanteile

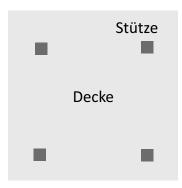
- Verformung (Stauchung) infolge Einwirkung bevor Brand
- Verformung (Ausdehnung) infolge Temperatureinwirkung
- Verformung (Stauchung) infolge Steifigkeitsverlust durch Temperatureinwirkung

Warmbemessung Einwirkungen im Brandfall

Quadratstütze 250 x 250 mm, L = 3.63 m, Maximaler Zwang:

$$\Delta L = \frac{\Delta N}{EA} \cdot L$$

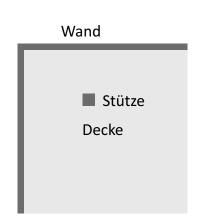
$$\Rightarrow \Delta N = \frac{\Delta L}{L} \cdot EA$$

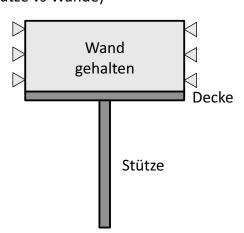

$$\Delta N = \frac{6.8mm}{3630mm} \cdot 1600MN$$

$$\Delta N \approx 3000kN$$

Warmbemessung Einwirkungen im Brandfall

Weniger kritische Fälle:


- «Freie» Verformung möglich
- · Gleichmässige Ausdehnung



Warmbemessung Einwirkungen im Brandfall

Kritische Fälle:

- Verformung behindert (Reaktion des Tragsystems)
- Ungleichmässige Ausdehnung (z.B. Stütze vs Wände)

Validierung des Bemessungsmodells Vergleichsrechnungen

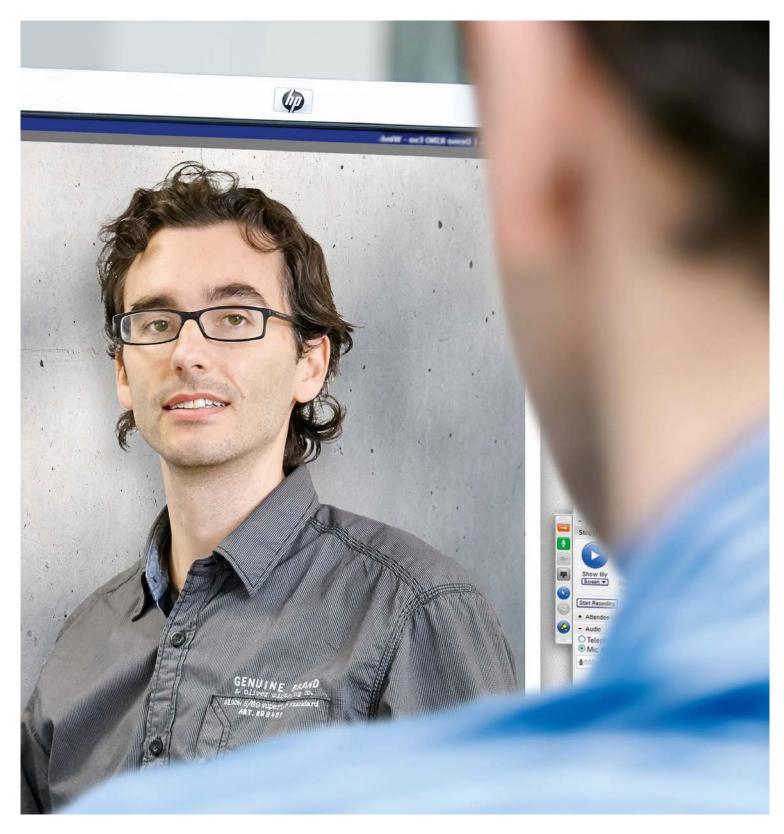
Form	Abmessung	N _{test} /N _{Rdkalt}	Versuch	3D-FEM
Quadrat	250 x 250 mm	53%	125 min	76 min
Rechteck	200 x 300 mm	70 %	72 min	47 min
Kreis (Inox)	ø219 mm	50 %	137 min	98 min
Kreis	ø324 mm	62%	142 min	100 min
Rechteck	150 x 250 mm	70%	64 min	41 min
Quadrat	180 x 180 mm	70%	37 min	35 min

Versuche vs 3D-FEM:

- Alle berechneten Brandwiderstandszeiten sind kleiner als im Versuch gemessen
- Die Berechnung liefert konservative Ergebnisse
- Die Berechnung liefert sichere Ergebnisse

Zusammenfassung

Bemessungssituation Brand


- Bemessung erfolgt mit Grundlagen der SIA Normen und des Eurocodes
- Alter Bemessungsansatz ist von der VKF zertifiziert (bis 31.12.2017)
- Neuer Bemessungsansatz ist im Anerkennungsverfahren bei der VKF (ab 01.01.2018)
- Bemessung basiert auf einer ausführlichen experimentellen und numerischen Untersuchung
- Bemessung liefert Ergebnisse auf der sicheren Seite

- Bemessungshilfsmittel von Aschwanden

- Bemessungssoftware
- Tragwiderstandstabellen
- Aschwanden-App

Kundennutzen mit ORSO-V-Stützen

- Hochbelastbare und schlanke Stützen und damit ästhetisch ansprechende Lösung
- Brandschutzzulassung nach VKF
- Öffentliches Brandgutachten auf der Webseite verfügbar
- Kombinierbar mit DURA®-Durchstanzsystem- und RINO® -Exo
- Versetzbereite Stütze ausbetoniert mit Fuss- und Kopfplatten (Herstellungsqualität im Werk ist grösser als in situ betoniert)
- Einfache Bemessung dank prozessunterstützender Software
- Die Stützen sind in verschiedenen Oberflächen ausführbar

F.J. Aschwanden AG Grenzstrasse 24 CH-3250 Lyss T +41 (0)32 387 95 95 F +41 (0)32 387 95 99 info@aschwanden.com www.aschwanden.com

