[campus]

FACHREFERAT - IM RAHMEN DES ASCHWANDEN-CAMPUS ORSO Stützen Einführung in die Bemessungssoftware

Dr. Stefan Lips,

Technischer Leiter F&E, F.J. Aschwanden AG, Lyss

Prof. Dr. Albin Kenel,

Institutsleiter Bauingenieurwesen, Hochschule Luzern - Technik & Architektur, Horw

Inhaltsverzeichnis

1.	Einleitung	5
2.	Prozesse ORSO Bemessungssoftware	7
3.	Programmanwendung	11
4.	Beispiel 1: Rechteckige Innenstütze	29
5.	Beispiel 2: Quadratische Randstütze	35
6.	Bezeichnungen	43
7.	Literatur	43

Exkurse

Normative Stützenbemessung in Kürze	
Koordinatensystem in der ORSO Software	13
Randbedingungen im Brandfall	19
Oberflächen bei ORSO-V Stahl/Beton Verbundstützen	23
Lasteinleitung in die Stahlbetonplatte	25

1. Einleitung

Stützen bilden einen wesentlichen Beitrag zur Gesamttragstruktur von Gebäuden. Obwohl sie als Stabtragwerk eine simple Geometrie aufweisen, ist die Bemessung durch das Zusammenspiel mit der Beanspruchung relativ komplex. Für einfache Fälle, wie annähernd zentrisches Knicken können Stützen in einem angemessenen Umfang bemessen werden. Kommen hingegen zusätzliche Einwirkungen wie Stützeneinspannmomente oder horizontale Einwirkungen hinzu, wird die Bemessung schnell aufwendig, insbesondere wenn es sich um zweiachsige Biegebeanspruchung handelt.

Eine zusätzliche Komplexität stellt der Nachweis für die Bemessungssituation Brand dar. Daher werden Stützen oft mit Bemessungsprogrammen bemessen, wobei die Programme vielfach wenige Informationen zur Berechnung bzw. den Rechenannahmen preisgeben. Da die Berechnungen aufgrund der Komplexität nicht einfach nachvollzogen werden können, ist es umso wichtiger, dass der Ingenieur die in der Bemessung getroffenen Annahmen versteht und kontrolliert.

Das vorliegende Dokument zeigt auf, was es bei der Stützenbemessung mit der ORSO Bemessungssoftware zu beachten gilt. Die einzelnen erforderlichen Eingabewerte werden Schritt für Schritt erklärt. Ausserdem werden diverse Themen aufgegriffen und in verschiedenen theoretischen Exkursen diskutiert.

Die hierin dargestellten Informationen und Hilfsmittel gelten ausschliesslich für ORSO Stützen und die ORSO Bemessungssoftware.

2. Prozesse ORSO Bemessungssoftware

Die ORSO Bemessungsprogramme (ORSO-V Stahl/Beton Verbundstützen und ORSO-B Stahlbetonstützen) sind im Aschwanden Software-Paket integriert und prozessorientiert konzipiert. Der Kern der Aschwanden Software ist der Projektmanager, in dem die Projektdaten für verschiedene Projekte erstellt und geändert werden können. Einmal im Projektmanager erhobene Projektdaten können daher auch für andere Aschwanden Bemessungsprogramme, wie z.B. DURA, CRET, verwendet werden.

Im Stützen-Explorer können beliebig viele Positionen erfasst und weiterbearbeitet werden. Jede Stützenposition kann bemessen, abgelegt und nach veränderten Randbedingungen wieder aufgerufen und neu bemessen werden. Die verschiedenen Stützenpositionen werden im Stützen-Explorer übersichtlich und mit der Angabe der Bearbeitungstiefe der Bemessung dargestellt und zusammengefasst.

Eingabe und Bemessung werden auf der rechten Bildschirmseite vorgenommen. Die Eingabe erfolgt generell von oben nach unten. Diese intuitive Anordnung erlaubt eine effiziente und strukturierte Handhabung der Software.

Die Zusammenstellung der Eingaben und die detaillierte Resultatausgabe für jede Position erlauben einen schnellen Überblick. In der Ausgabe erhalten Sie die Detailstatik für die Stützenbemessung. Diese Zusammenstellung kann der F.J. Aschwanden AG direkt per E-Mail als Offertanfrage unterbreitet werden. Die F.J. Aschwanden AG erstellt für Sie eine Offerte mit allen von Ihnen gewählten Lösungen. Entsprechend Ihrer Wahl generiert die Bemessungssoftware aus den zentral verwalteten Daten eine Bestellliste, die wiederum direkt per E-Mail gesandt werden kann. Der Ausschreibungstext wird aus den zentral verwalteten Daten generiert und kann beispielsweise als Word-Dokument exportiert werden.

Exkurs: Normative Stützenbemessung in Kürze

Im Hochbau werden Stützen in der Regel hauptsächlich zur vertikalen Lastabtragung eingesetzt und erfahren somit grundsätzlich Normalkraft als Einwirkung. Allerdings sind für die Bemessung der Stützen eigentlich die Biegemomente von zentraler Bedeutung, die entweder durch zusätzliche Einwirkungen oder durch Effekte zweiter Ordnung entstehen. Deshalb ist bei der Bemessung von Stützen nicht nur der Normalkraftwiderstand, sondern vor allem auch die Biegesteifigkeit bzw. die Schlankheit entscheidend. Daher führen Stützenquerschnitte mit hoher Druckfestigkeit zwar zu hohen Normalkraftwiderständen, wird aber die Biegesteifigkeit nicht im selben Rahmen erhöht, verliert der Querschnitt grundsätzlich an Effizienz. Stahlbeton/Verbundstützen mit Aussenrohren zeichnen sich gerade daher durch eine erhöhte Wirksamkeit aus, da sie im Gegensatz zu Stahlbetonstützen im Bereich des grössten Trägheitsmomentenanteil (Aussenrand), das steifere Material besitzen.

Obwohl Stahlbeton- und Stahl/Betonverbundstützen aus gleichen Materialien (Stahl und Beton) hergestellt werden unterscheidet sich die normative Bemessung signifikant. Die Norm Betonbau SIA 262:2013 basiert auf einem physikalischen Ansatz der eine gewisse Imperfektion und eine Krümmungsverteilung zu Grunde legt. In der Norm wird die gesamte Exzentrizität aus den Anteilen der Imperfektion, Momente erster Ordnung und Exzentrizitäten infolge zweiter Ordnung definiert zu

$$e_d = e_{0d} + e_{1d} + e_{2d}$$

Dabei gibt es verschiedene Näherungsstufen für die Berechnung der Exzentrizitäten zweiter Ordnung. Grundsätzlich wird die Exzentrizität zweiter Ordnung durch die Integration der Krümmung bestimmt.

$$e_{2d} = \chi_d \cdot \frac{L_k^2}{c}$$

Der Integrationsfaktor c hängt dabei von der Verteilung der Krümmung entlang der Stütze ab. Wird näherungsweise eine sinusförmige Verteilung mit Maximum bei halber Stützenlänge angenommen ist $c = \pi^2$. Die Krümmung kann vereinfachend durch die maximale Krümmung angenommen werden:

$$\chi_d = \frac{\varepsilon_{sd} - \varepsilon'_{sd}}{d - d'}$$

Mit einer abschnittsweisen Berechnung der Krümmungen entlang der Stützenachse, kann die Genauigkeit der Berechnung erhöht werden. Dies führt schliesslich zu einer nichtlinearen Finite-Element-Analyse, bei welcher die Krümmung in jedem diskreten Stützenelement bestimmt wird.

Anhand der Exzentrizität e_d kann schliesslich die Momenteneinwirkung bestimmt werden. Mit der Einwirkung bestehend aus N_d und M_d und dem Widerstand des Querschnittes, üblicherweise bestimmt mit einem N_{Rd} - M_{Rd} -Interaktionsdiagramm, kann der Tragsicherheitsnachweis geführt werden.

Im Gegensatz zur Norm Betonbau lehnt sich die Norm Stahl-Beton-Verbundbau SIA 264:2014 an das empirische Verfahren der Norm Stahlbau an. Grundsätzlich wird unterschieden, ob die Stütze annähernd zentrisch belastet -keine zusätzlichen Einwirkungen- oder ob Druck mit Biegung vorhanden ist. Bei annähernd zentrisch belasteten Stützen wird der Tragwiderstand mit Hilfe des Knickbeiwertes aus der Norm Stahlbau ermittelt. Dazu wird der plastische Normalkraftwiderstand mit dem Knickbeiwert multipliziert.

$$N_{Rd} = \chi_K \cdot N_{pl,Rd}$$

Der Knickbeiwert wird mit den Knickspannungskurven ermittelt. In der SIA 263:2013 sind vier verschiedene Knickspannungskurven abgebildet, die verschiedene Querschnittstypen sowie die Belastungsrichtung abdecken. Die Kurven zeigen den Knickbeiwert in Abhängigkeit der bezogenen Schlankheit, die sich anhand des plastischen Normalkraftwiderstandes und der Euler'schen Knicklast bestimmen lässt. Diese Knickspannungskurven wurden empirisch erstellt. Dabei ging man von einer Vorverformung von L/1000 aus. Weitere Effekte wie Eigenspannungen aus dem Walzprozess sowie ungleichmässige Fliessspannungsverteilung im Querschnitt wurden aus Versuchsergebnissen abgeleitet. Was jedoch nicht abgedeckt ist, sind Nicht-Linearitäten im Materialverhalten wie sie beim Beton auftreten. Diese Vernachlässigung scheint für Bemessungen im Stahlbau zutreffend zu sein. Trotzdem werden diese Knickkurven auch im Stahl-Beton-Verbundbau eingesetzt.

Bei Druck mit Biegung erfolgt die Bemessung mittels Interaktionsdiagramm. Dabei wird für die Bemessungslast N_d der dazugehörige Biegewiderstand $M_{pl,N,Rd}$ bestimmt. Der Nachweis gilt als erfüllt, wenn die Biegeeinwirkungen inklusive Effekte 2. Ordnung weniger als 90% des Biegewiderstandes $M_{pl,N,Rd}$ ist:

$$\frac{M_{Ed,II}}{M_{pl,N,Rd}} \le 0.9$$

Stützen sind in der Regel entscheidend für die Gesamtstabilität eines Gebäudes deshalb ist in vielen Fällen auch ein normativer Feuerwiderstand erforderlich. Hierfür stehen verschiedene Methoden für den Nachweis zur Verfügung. Bei Stahlbetonstützen ist jedoch für alle Bemessungsmethoden entscheidend, dass der Überdeckungsbeton nicht abplatzt. Trotz vieler Forschungsarbeiten kann das Abplatzverhalten der Betonmischung bislang nur durch Brandversuche nachgewiesen werden. Kann das Abplatzen ausgeschlossen werden, wird bei Stahlbetonstützen oft die Methode A des Eurocodes EN1992-1-2:2004 verwendet. Dabei kann anhand verschiedener Parameter die Brandwiderstandsdauer der Stütze berechnet werden. Die Parameter hierfür sind die Querschnittsabmessungen, die Knicklänge, die Anzahl und Lage der Bewehrung sowie die Belastung im Brandfall im Verhältnis zur Kalttraglast. Es gilt anzumerken, dass diese Methode nur angewendet werden kann, solange die Normalkrafteinwirkungen im Brandfall 70% des Kaltwiderstandes nicht übersteigen.

Die Bemessung von Stahl/Beton Verbundstützen lehnt sich ebenfalls bei der Brandbemessung an die Norm Stahlbau an. Der Normalkraftwiderstand bei annähernd zentrisch belasteten Stützen ergibt sich wie im Kaltzustand aus dem Knickbeiwert der Norm Stahlbau. Im Brandfall werden jedoch der plastische Normalkraftwiderstand und der Knickbeiwert mit den temperaturabhängigen Festigkeit und Steifigkeit bestimmt. Bei Stützen mit zusätzlichen Momenteneinwirkungen definiert der Eurocode EN 1994-1-2:2005 Anhang H ein vereinfachtes Verfahren. Allerdings ist dieses Verfahren nur unter ganz bestimmten Randbedingungen zulässig, welche oft nicht eingehalten werden können. Daher empfiehlt sich hier das allgemeine Berechnungsverfahren nach EN 1994-1-2:2005.

3. Programmanwendung

Das Programm ist grundsätzlich in zwei Spalten unterteilt. Die linke Spalte mit den Projektdaten, Stützen Explorer und Ausgabe dient zur Navigation und Information. Die rechte Spalte dient zur Eingabe und der Bemessung.

≡ Menü						ORSO-V Version: 9
1. Projektdaten		Beipiele		Statze stopt Star		
2. Stützen-Explor	rer	ahila Kashala Taballa A	+	Stütze		
* Nede Statze	Gra					
Annahi	Berspiel_1		+	Abmessungen		
Zeichnungs-Nr.	•			- · · · · · · · ·		
Etage			+	Einwirkungen nochbau		
Raumhöhe	3000		+	Einwirkungen Anprall		
Produkt	ORSO-V					
Form	Kreis		+	Einwirkungen Brandfall		
Abmessungen	102.0					
Nd	2000					
Belastungsrichtung	z-Richtung					
Nacc,d	1400					
Anpralityp	Kein					
Nfi,d	1400					
Model	60					
Kopfdetail	-					
Lage oben	Innenstütze					
Fussdetail	-					
Lage unten	Innenstütze					
	⊡ ⊗					
2 Augustus						

Bild 1: Eingabeoberfläche der ORSO Software

Im Stützen-Explorer können die einzelnen Bemessungspositionen erstellt werden. Im Tabellenmodus kann mit einem Klick auf die entsprechende Spalte die gewünschte Bemessungsposition angewählt werden. Im Grafikmodus kann zwischen den einzelnen Bemessungspositionen hin- und hergewechselt werden.

Die Eingabeparameter sind in verschiedene Gruppen unterteilt, die sich mit dem Plus/Minus Zeichen neben dem Titel separat öffnen und schliessen lassen.

Zuerst wird die Stütze selber bemessen. Anschliessend können die Anschlussdetails Kopf- / Fussdetail definiert werden.

Stütze

Name	Beispiel_1	
Anzahl	1	
Zeichnungsnummer		
Etage		

Bild 2: Eingabe der Grundlagen der Stütze

Eingabeparameter	Wert	Erläuterung
Name		Eingabe der Bezeichnung dieser Bemessungsposition
Anzahl		Eingabe der Anzahl dieser Bemessungsposition im Projekt.
Zeichnungsnummer		Plannummer der Kontrollpläne (wird durch Aschwanden festgelegt)
Etage		Optionale Angabe der Etage

Exkurs: Koordinatensystem in der ORSO Software

Das Koordinatensystem in der ORSO Software entspricht der im Allgemeinen in der Stabstatik verwendeten Logik. D.h., die Stützenachse entspricht der Achse x und der Querschnitt ist durch die Ebene y-z definiert.

Bei den hinterlegten Rechteck- und Parkquerschnitten ist jeweils die kürzere Seite in z-Richtung definiert. Daher ist in der Regel das Knicken **um** die y-Achse, somit **in** z-Richtung, massgebend. Dies gilt es insbesondere bei der Eingabe der Belastungsrichtung zu beachten.

Neben der Belastungsrichtung ist bei der Eingabe der zusätzlichen Einwirkungen ebenfalls der Drehsinn der Momenteneinwirkungen zu beachten. Die in der Software angenommene Vorverformung der Stütze erzeugt bei Pendelstützen Zugkräfte im positiven Bereich und Druckkräfte im negativen Bereich des Koordinatensystems (siehe nachfolgendes Bild). Somit ist bei der Eingabe von Biegemomenten dies gleichermassen zu beachten, um eine Belastung und keine Entlastung der Stütze zu erhalten. D.h., die Momenteneinwirkung soll bei Pendelstützen im positiven Bereich des Koordinatensystems Zugkräfte erzeugen.

Das Vorzeichen der Einwirkungen richtet sich nach der üblichen Definition der Stabstatik.

Dies bedeutet zum Beispiel, falls ein belastendes Kopfmoment um die y-Achse eingefügt werden sollte, ist dies mit positiven Vorzeichen einzugeben.

Bei der Eingabe einer Lastexzentrizität gilt folgendes zu beachten. Das Vorzeichen der Exzentrizität korresponidert mit dem Koordinatensystem. Da die Normalkraft in negativer x-Richtung wirkt, ergibt sich somit ein positives Moment um die y-Achse, wenn der Wert e_{z2} ein negatives Vorzeichen hat.

Abmessungen

- Abmessungen				
Raumhöhe	3000	mm		
Querschnittsform		Ū		
Oberfläche	Sa 2.5 + Z 2.40	0		
Durchmesser d	102	mm		
ild 3: Eingabe der Abmessungen				

Eingabeparameter	Wert	Erläuterung
Raumhöhe		Die Raumhöhe bezeichnet die Distanz zwischen OK Bodenplatte und UK Deckenplatte. Aufgrund dieser Angaben wird die exakte Stützenlänge berechnet.
Querschnittsform	Rund Quadratisch Rechteckig Oval (ORSO-B Park)	
Oberfläche	Sa 2.5 Sa 2.5 +Z2.40 Sa 2.5 +Z2.80 Sa 2.5 +Z2.120 Sa 2.5 + Pulverlackiert Duplex: FVZ + sweepen + EP- Primer Blank FVZ Inox	Bei ORSO-V Stahl/Beton Verbundstützen stehen verschiedene Oberflächenbehandlungen für das Stahlrohr sowie Inoxrohre zur Auswahl. (Siehe Hierzu Exkurs: "Oberflächen bei ORSO-V Stahl/Beton Verbundstützen")
Durchmesser Seitenlänge Höhe x Breite		Bei den rechteckigen sowie bei Parkstützen ist die kürzere Länge (Höhe) jeweils in z- Richtung.

Einwirkungen Hochbau

— Einwirkungen Hochbau			
Normalkraft N _d	2000	kN	
Dauerlastanteil β	80	%	
Belastungsrichtung	z-Richtung 🗸		
Randbedingungen im Kaltzustand			
Zusätzliche Einwirkungen			

Bild 4: Eingabe der Einwirkungen für Bemessungssituation Hochbau

Eingabeparameter	Wert	Erläuterung
Normalkraft	N _d	Normalkraft für die Bemessungssituation Hochbau.
Dauerlastanteil	β	Anteil der Last aus den ständigen und quasi- ständigen Einwirkungen (die kriechwirksam sind) an der Gesamtlast.
Belastungsrichtung	z-Richtung y-Richtung Biaxial	Bei rechteckigen und Parkstützen ist jeweils die z-Richtung (kürzere Abmessung) massgebend. Falls die Stütze in dieser Richtung gegen Ausknicken behindert ist, kann die y-Richtung massgebend werden. Falls zusätzliche Einwirkungen in beide Richtungen wirken, ist "biaxial" zu wählen.
Randbedingungen im Kaltzustand		Die Randbedingungen im Kaltzustand definieren die Auflagerbedingungen am Stützenkopf und Stützenfuss für die Bemessungssituationen Hochbau und Anprall.
Zusätzliche Einwirkungen	Ja/Nein	Falls zusätzliche Einwirkungen, wie z.B. Kopfmomente vorhanden sind, kann die Checkbox aktiviert werden. Bei aktivierter Checkbox stehen zusätzliche Eingabemöglichkeiten zur Verfügung (siehe Abschnitt "Zusätzliche Einwirkungen").

Einwirkungen Anprall

— Einwirkungen Anprall			
Normalkraft N _{acc,d}	1400	kN	
Anprallvorhanden	Kein 👻		
Richtung	z-Richtung 💌		
Zusätzliche Einwirkungen			

Bild 5: Eingabe der Einwirkungen für Bemessungssituation Anprall

Eingabeparameter	Wert	Erläuterung
Normalkraft	N _{d,acc}	Normalkraft für die Bemessungssituation Anprall. Diese Last wird mit Lastbeiwerten für aussergewöhnliche Lastfälle bestimmt.
Anprall vorhanden	Nein Kat. F Kat. G Spezial	Für die Bemessungssituation Anprall stehen die in der Norm SIA 261:2014 definierter Fälle zur Verfügung. Bei "Spezial" steht eine freie Eingabe zur Verfügung
Richtung	z-Richtung y-Richtung Biaxial	Der Anprall kann entweder als in z-Richtung (Standard), y-Richtung oder biaxial wirkend eingegeben werden. Bei der Wahl "biaxial" müssen die Anprallkräfte manuell eingeben werden.
Zusätzliche Einwirkungen		Falls zusätzliche Einwirkungen, wie z.B. Kopfmomente vorhanden sind, kann die Checkbox aktiviert werden. Bei aktivierter Checkbox stehen zusätzliche Eingabemöglichkeiten zur Verfügung (siehe Abschnitt "Zusätzliche Einwirkungen")
		Um eine manuelle Eingabe der Anprallkraft vornehmen zu können, ist die Checkbox anzuwählen.

Einwirkungen Brand

Eingabeparameter	Wert	Erläuterung
Normalkraft	N _{d,fi}	Normalkraft für die Bemessungssituation Brand. Diese Last wird mit Lastbeiwerten für aussergewöhnliche Lastfälle bestimmt. Es gilt ebenfalls darauf zu achten, dass im Brandfall Zwangsschnittkräfte infolge der temperaturbedingten Stützenverlängerung auftreten können.
Brandwiderstand	R30 – R240	Es können Brandwiderstandsdauern von 30 bis 240 Minuten angewählt werden.
Berechnungsmethode	EN / NLFEA	Mit der Auswahlbox "Berechnungsmethode" kann gewählt werden, nach welcher Methode die Stütze bemessen wird. EN entspricht einer vereinfachten Methode und NLFEA einer nichtlinearen Finite-Element-Analyse.
Randbedingungen im Brandzustand		Im Brandfall sind die Auflagerbedingungen unter Umständen anders zu berücksichtigen als im Kaltzustand. Daher können im Brandfall andere Randbedingungen gewählt werden. Siehe Exkurs Randbedingungen im Brandfall.
Zusätzliche Einwirkungen		Falls zusätzliche Einwirkungen, wie z.B. Kopfmomente vorhanden sind, kann die Checkbox aktiviert werden. Bei aktivierter Checkbox stehen zusätzliche Eingabemöglichkeiten zur Verfügung (siehe Abschnitt "Zusätzliche Einwirkungen").
		Sind zusätzliche Einwirkungen bei der Bemessungssituation Brand vorhanden, muss bei ORSO-V Stützen mit einer nichtlinearen finite Element Analyse (NLFEA) gerechnet werden.

Bild 6: Eingabe der Einwirkungen für Bemessungssituation Brand

Exkurs: Randbedingungen im Brandfall

Bei der Bemessung von Stützen können gemäss EN 1994-1-2:2005 Ziffer 4.3.5.1 je nach Lage der Stütze im Brandfall geringere Knicklängen als im Kaltzustand angenommen werden. Dies bedeutet für eine finite Element Modellierung eine Änderung der Randbedingungen. Diese Änderung der Randbedingung lässt sich durch den Temperaturverlauf der Betonstruktur erklären. Während des Brandes erhitzt sich in einem ersten Schritt die Stütze. Weil die anschliessenden Geschosse vom Brand nicht betroffen sind, haben sie eine kühlende Wirkung auf die Decken-/Bodenplatten, die sich somit weniger schnell erwärmen als die Stütze. Die Decken-/Bodenplatten haben ihrerseits somit einen kühlenden Effekt der Stützenanschlüsse. Daher erwärmt sich die Stütze vor allem im mittleren Bereich und verliert dort an Festigkeit und Steifigkeit. Somit ergibt sich eine Situation wie bei einer Einspannung und die Knickfigur ist ähnlich einer Stütze mit beidseitiger Einspannung.

Der Eurocode benennt allerdings nur Innenstützen, Stützen im obersten oder untersten Geschoss und Stützen in offenen Gebäudeteilen. Bei Rand- und Eckstützen sind im Eurocode keine Angaben enthalten. Es wird aber empfohlen diese wie Stützen im obersten Geschoss zu betrachten. Bei einem Atrium ohne räumliche Beschränkung des Brandraumes stellt sich diese Situation nicht ein und daher muss in diesen Fällen mit der ganzen Stützenlänge als Knicklänge gerechnet werden.

(nicklängen im Brandfall EN 1993-1-2, Ziffer 4.2.3.2):			
Anwendungsfall	Innenstütze mit raumabschliessenden Decken	Rand- und Eckstütze Stütze Dachgeschoss	Stütze ohne raumabschliessende Decken, z.B. Atrium
Randbedingungen			
Situation			
Knicklänge im Brandfall	$L_{k,fi} = 0.5 L$	L _{k,fi} = 0.7 L	L _{k,fi} = 1.0 L

Obwohl dies nicht im Eurocode erwähnt ist, gilt dies nur falls vom zentrischen Knicken im Brandfall ausgegangen werden kann. Sind im Brandfall Stützenkopf- oder Stützenfussmomente vorhanden, bildet sich eine andere Knickfigur aus, so dass auch die entsprechenden Randbedingungen gewählt werden müssen. Falls zum Beispiel im Brandfall ein Kopfmoment oder eine Lastexzentrizität auftritt, kann sich nicht die Knickfigur einer beidseitig eingespannten Stütze einstellen. D.h., in diesem Fall muss die Randbedingung unten eingespannt und oben gelenkig gewählt werden. Dies gilt sinngemäss für den Fall bei einem Stützenfussmoment. Tritt ein Stützenkopf- und Stützenfussmoment auf, muss die Stütze auch im Brandfall -unabhängig ihrer Lage- als Pendelstütze betrachtet werden.

Stützenkopf M _{y2}	0.0	kNm (j
e _{z2}	0.0	mm
		1
Verteilte Belastung q _{z,d}	0.0	kN/m
Einzellast Q _{z,d}	0.0	kN
h _{Qz,d}	0.0	mm
Stützenfuss M _{y0}	0.0	kNm
e _{z0}	0.0	mm
Stützenkopf M _{z2}	0.0	kNm (j)
e _{y2}	0.0	mm
Verteilte Belastung q _{v.d}	0.0	kN/m
-,,-		
Einzellast Q _{y,d}	0.0	kN
h _{Qy,d}	0.0	mm
		1
Stützenfuss M _{z0}	0.0	kNm
e _{y0}	0.0	mm

Zusätzliche Einwirkungen (Bemessungssituation Hochbau, Anprall, Brand)

Bild 7: Eingabe von zusätzlichen Einwirkungen

Eingabeparameter	Wert	Erläuterung
Stützenkopfmoment	M_{y2d},M_{z2d}	Eingabe einer Momenteneinwirkung am Stützenkopf
Exzentrizität am Stützenkopf	e _{z2} , e _{y2}	Alternativ zu einer Momenteneinwirkung, kann eine Lastexzentrizität am Stützenkopf eingeben werden.
Verteilte Belastung	$q_{z,d}, q_{y,d}$	Die verteilte Belastung wird über die gesamte Stütze wirkend angenommen.
Einzellast	$\begin{array}{l} Q_{z,d}, Q_{y,d} \\ h_{Qz,d}, h_{Qy,d} \end{array}$	Unter Einzellast kann eine Punktlast auf einer bestimmten Höhe definiert werden. Die Höhenangabe bezieht sich auf OK Bodenplatte.
Stützenfussmoment	M_{y0d},M_{z0d}	Eingabe einer Momenteneinwirkung am Stützenfuss
Exzentrizität am Stützenfuss	e _{z0} , e _{y0}	Alternativ zu einer Momenteneinwirkung, kann eine Reaktionsexzentrizität am Stützenfuss eingeben werden.

Anprall	$f Q_{y,d}, Q_{z,d}$ $f h_{Qy}, f h_{Qz}$ a_y, a_z	Bei der Bemessungssituation Anprall, können entweder die vordefinierten Anpralllasten (Kat. F, Kat. G) verwendet werden oder Lasten manuell eingetragen (Spezial) werden. Bei einer biaxialen Belastung ist eine manuelle Eingabe der Anpralllasten erforderlich. Die manuelle Eingabe beinhaltet die Anpralllast Q _d , die Höhe der Anpralllast h _o
		die Anpralllast Q _d , die Höhe der Anpralllast h _Q ab OK Bodenplatte und die Verteilhöhe a.

Bild 8: Eingabe von Anpralllasten

Resultate

Die Software schlägt als Ergebnis das wirtschaftlichste Modell mit den gewünschten Abmessungen vor, welches die statischen Anforderungen erfüllt. Konnte kein Modell mit der gewünschten Abmessung gefunden werden, das den statischen Anforderungen gerecht wird, wird das Stützenmodell mit dem kleinstmöglichen Querschnitt gesucht und als Lösung vorgeschlagen. Bei Rechteckstützen wird zuerst die Stützenbreite (längere Seite) vergrössert und anschliessend die Höhe (kürzere Seite). Bei ORSO Park Stützen wird zuerst die Höhe (kürzere Seite) vergrössert und anschliessend die Stützenbreite (längere Seite).

Exkurs: Oberflächen bei ORSO-V Stahl/Beton Verbundstützen

ORSO-V Stahl/Beton Verbundstützen bieten verschiedene Möglichkeiten für die Wahl bzw. der Bearbeitung des äusseren Stahlmantels. Grundsätzlich kann gewählt werden ob Schwarzstahl oder nicht-rostender Stahl verwendet wird. Je nach Korrosionsanforderung kann beim Schwarzstahl noch die Nachbearbeitung gewählt werden. Üblicherweise werden die Stützen sandgestrahlt und mit einer Zinkstaubgrundierung versehen. Die Schichtstärke richtet sich nach den Anforderungen des Korrosionswiderstandes. Das Merkblatt SIA 2022 und die Konstruktionstabellen SZS C5 zeigen für die verschiedenen Korrosionskategorien die zugehörigen Oberflächenbehandlungen. Standardmässig wird eine 2-komponentige Zinkstaubgrundierung von 40µm aufgebracht. Dies entspricht einer Korrosionskategorie C1, welche für Stützen in trockener Umgebung innerhalb von geheizten Gebäuden gedacht ist. Bei höheren Anforderungen kann entweder die Schichtstärke erhöht oder eine andere Oberflächenbehandlung wie Feuerverzinkung oder Duplexverfahren vorgesehen werden.

Contraction of	the state of the s
	STATE OF TAXABLE PARTY.

Roher Stahl (unbehandelt)

Stahlkorngestrahlt SA 2½ und mit 40µm/80µm/120 µm Zweikomponenten-Zinkstaubfarbe beschichtet Stahlkorngestrahlt SA 2½ und mit 40µm Zweikomponenten-Zinkstaubfarbe und Farbton nach Wahl beschichtet [Pulverlackiert]

Feuerverzinkt (FVZ)

Rostfreier Stahl, längsoder rundgeschliffen in der gewünschten Rauheit (Inox)

Kopfdetail

Eingabeparameter	Wert	Erläuterung
Anschlusstyp	Stahlbetonplatte Stahlträger Holzträger	Wird der Anschlusstyp Stahlbetonplatte gewählt, kann das Anschlussdetail in der Software bemessen werden. Wird Stahl- oder Holzträger gewählt kann eine Anschlussplatte mit einem gewünschten Lochbild definiert werden (nur ORSO-V). In diesem Fall obliegt die Bemessung des Anschlussdetails dem Ingenieur.
Dicke		Die Dicke der Stahlbetonplatte hat einen wesentlichen Einfluss auf die Krafteinleitung. Je dicker die Platte ist, desto besser ist die Krafteinleitung.
Material	C20/25 – C50/60	Als Material der Stahlbetonplatte stehen die üblichen Betonqualitäten zur Verfügung.
Stützenanordnung	Innenstützen Randstütze Eckstütze	Die Stützenanordnung definiert die Lage der Stütze innerhalb des Gebäudes. Bei Rand- und Eckstützen ist die Konstruktionsvielfalt der Krafteinleitung eingeschränkt.
Einsenkung		Die Einsenkung der Stütze erlaubt das Einsenken der Kopf- bzw. Lastverteilplatte.
Rand parallel zu	y-Achse z-Achse	Bei Randstützen ist anzugeben, in welcher Richtung der Plattenrand verläuft.
Randabstand		Der Randabstand ist die Distanz zwischen Plattenrand und Stützenkante.
Kraftdurchleitung		Falls eine oberliegende Stütze vorhanden ist, kann eine Kraftdurchleitung vorgesehen werden.
Durchzuleitende Kraft		Wird eine Kraftdurchleitung gewünscht, muss die durchzuleitende Kraft angegeben werden. In der Regel entspricht dies der Last aus der oberliegenden Stütze.

Fussdetail

Eingabeparameter	Wert	Erläuterung
Anschlusstyp	Stahlbetonplatte Stahlträger Holzträger	Wird der Anschlusstyp Stahlbetonplatte gewählt, kann das Anschlussdetail in der Software bemessen werden. Wird Stahl- oder Holzträger gewählt kann eine Anschlussplatte mit einem gewünschten Lochbild definiert werden (nur ORSO-V). In diesem Fall obliegt die Bemessung des Anschlussdetails dem Ingenieur.
Dicke		Die Dicke der Stahlbetonplatte hat einen wesentlichen Einfluss auf die Krafteinleitung. Je dicker die Platte ist, desto besser ist die Krafteinleitung.
Material	C20/25 – C50/60	Als Material der Stahlbetonplatte stehen die üblichen Betonqualitäten zur Verfügung.
Stützenanordnung	Innenstützen Randstütze Eckstütze	Die Stützenanordnung definiert die Lage der Stütze innerhalb des Gebäudes. Bei Rand- und Eckstützen ist die Konstruktionsvielfalt der Krafteinleitung eingeschränkt.
Einsenkung		Die Einsenkung der Stütze erlaubt das Einsenken der Kopf- bzw. Lastverteilplatte.
Rand parallel zu	y-Achse z-Achse	Bei Randstützen ist anzugeben, in welcher Richtung der Plattenrand verläuft.
Randabstand		Der Randabstand ist die Distanz zwischen Plattenrand und Stützenkante.
Kraftdurchleitung		Falls eine unterliegende Stütze vorhanden ist, kann die wirtschaftlichste Lösung (F31/F60/F61) gewählt werden. Der Nachweis wird bei der Berechnung des Kopfdetails der unterliegenden Stütze durchgeführt.
Mörtelschichtdicke		Die Mörtelschichtdicke ist für die Berechnung der Fussdetails nicht relevant. Allerdings ist dies wichtig, um die genaue Länge für die Produktion der Stütze zu bestimmen.
Kote OK Bodenplatte		Die Angabe der Kote ist optional. Diese Angabe wird auf dem Versetzplan ausgegeben.

Exkurs: Lasteinleitung in die Stahlbetonplatte

Bei Stützen, wie bei vielen anderen Bauteilen, ist es wichtig, dass nicht nur die Stütze für die Bemessungslast ausgelegt wird, sondern auch die Lastübertragung in die anzuschliessenden Bauteilen sichergestellt ist. Bei Stützen betrifft dies den Anschluss an die Boden- sowie Deckenplatte. Hierzu werden grundsätzlich verschiedene Standarddetails verwendet. Dieser Text beinhaltet die Anschlussdetails von ORSO-V Stützen, gilt aber sinngemäss auch für ORSO-B Anschlussdetails.

Bei den Kopfdetails gilt es zuerst zu unterscheiden, ob eine obenliegende Stütze vorhanden ist, so dass diese Last mit einer Kraftdurchleitung durch die Platte geführt werden kann. Falls keine Kraftdurchleitung vorgesehen wird, stehen bei ORSO-V folgende Details zur Verfügung:

Bei geringen Lasten genügt ein Kopfdetail K61. Bei grösseren Lasten kann ein Stahlpilz oder eine zusätzliche Lastverteilplatte die Krafteinleitung sicherstellen. Der Nachweis ob K61 genügt oder wie gross eine eventuell notwendige Lastverteilplatte sein muss, erfolgt durch die Berechnung gemäss Norm SIA 262:2013 für örtliche Pressungen (Artikel 4.2.1.11). Dabei kann der Bemessungswert der Betondruckfestigkeit in Abhängigkeit der Plattendicke bzw. der Lastausbreitungsmöglichkeit vergrössert werden.

Falls eine Kraftdurchleitung vorhanden ist, wird die Last einerseits durch die Lastdurchleitungselemente und anderseits durch den Beton übernommen. Sind trotz der Kraftdurchleitung die Pressungen an der Plattenunterseite zu gross, muss wiederum eine Lastverteilplatte angeordnet werden.

ORSO®

Wird Kopfdetail K65 mit Stahlpilz gewählt, wird die gesamte Kraft der darüberstehenden Stütze durch die Lastdurchleitung übertragen. Dies führt im Gegensatz zu Kopfdetail K64 und K66 zu mehr Lastdurchleitungsstäben. Der Grund hierfür ist, dass der Stahlpilz nicht mit zusätzlichen Kräften belastet werden darf. Die Stahlpilze werden in der DURA Software nur auf die Einwirkungen in der betrachteten Platte bemessen. Wirken auf den Stahlpilz zusätzliche Kräfte wie z.B. durch eine Querbelastung infolge einer oberen Stütze, sinkt der Stahlpilzwiderstand und die Tragsicherheit ist nicht mehr gewährleistet. Dies wird verhindert, indem die Last der oberen Stütze durch die Lastdurchleitung abgetragen und der Stahlpilz somit nicht zusätzlich belastet wird. Die Kombination von ORSO mit DURA ermöglicht deshalb eine sichere Bemessung des Stützen/Platten-Anschlusses.

Die Bemessung der Fussdetails erfolgt sinngemäss wie bei den Kopfdetails. Es wird wiederum überprüft, ob eine Lastverteilplatte notwendig ist oder nicht. Wird beim Fussdetail die Wahl "Kraftdurchleitung vorhanden" angewählt, wird keine Berechnung des Fussdetails durchgeführt bzw. es stehen immer alle Fussdetails zur Verfügung, da in diesem Fall der Nachweis beim Kopfdetail der unteren Stütze durchgeführt wird.

4. Beispiel 1: ORSO-V rechteckige Innenstütze

Gesucht ist eine rechteckige ORSO-V Innenstütze. Für eine erste Abschätzung sind folgende Werte gegeben:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Raumhöhe	2750 mm	
Querschnittsform	Rechteckig	
Normalkraft N _d	1200 kN	
Normalkraft im Brandfall N _{fi,d}	750 kN	
Brandwiderstand	R60	

Abschätzung der minimalen Abmessungen mit Tragwiderstandstabellen

Für eine erste Abschätzung der minimalen Abmessungen stehen die Tragwiderstandstabellen in der technischen Dokumentation zur Verfügung. Bei ORSO-V Stützen wird ebenfalls gerade der Tragwiderstand für die Warmbemessung dargestellt. Bild 10 zeigt die Tragwiderstandstabellen für rechteckige Innenstützen. Bei einer Last von 1200 kN für die Bemessungssituation Hochbau ist mindestens eine Stützenabmessung von 150 x 120 mm notwendig. Allerdings ist für die Bemessungssituation Brand (N_{fi,d} = 750kN, R60) eine Mindestabmessung von 250 x 150 mm notwendig. Dabei wurde bereits berücksichtigt, dass die Knicklänge im Brandfall bei Innenstützen halbiert werden darf.

Quer	schnitt/			Knick	länge L _k ir	[m] – Lon	gueur de f	lambage L	_K en [m]			
Secti	ion b×h [mm]	Modell / Modèle	2.0	2.5	2.75	3.0	3.25	3.5	3.75	4.0	5.0	6.0
	150×100	YA	1102	866	756	660	575	502	439	387	249	174
	200×120	NP	1662	1371	1235	1121	1018	923	835	756	509	358
	250×150	EY	3294	2890	2706	2512	2315	2130	1955	1802	1294	935
ы Б	260×180	BL	5628	5258	5094	4896	4670	4416	4129	3834	2780	2006
/a f	300×200	RN	6685	6152	5910	5684	5450	5208	4949	4683	3609	2745
calt	400×200	FN	7967	7376	7047	6766	6534	6292	6040	5779	4656	3678
-	350×250	TE	2097	11538	11224	10965	10761	10529	10283	9997	8620	6983
	450×250	JE	13820	13176	12831	12470	12156	11936	11700	11449	10161	8496
	500×300	OR	18505	17846	17476	17105	16693	16282	15850	15520	14265	12741
Quer	schnitt/	ŀ	Knicklänge	L _{k,fi} in [m]	im Brandf	all – Longu	ieur de flai	mbage L _{k,fi}	en [m] en	cas d'incer	ndie	
Secti	ion b×h [mm]	Modell / Modèle	1.0	1.25	1.375	1.5	1.625	1.75	1.875	2.0	2.5	3.0
	150×100	YA	738	605	546	491	438	389	353	317	220	161
	200×120	NP	1602	1394	1293	1195	1101	1009	927	852	596	435
	250×150	EY	3319	3066	2935	2808	2687	2561	2456	2351	1920	1488
	260×180	BL	5134	4886	4761	4621	4489	4364	4263	4170	3773	3306
R30	300×200	RN	6682	6433	6313	6165	6045	5906	5795	5703	5278	4806
	400×200	FN	7419	7307	7205	7115	7025	6901	6799	6687	6202	5615
	350×250	TE	10864	10695	10680	10526	10512	10405	10389	10252	9884	9471
	450×250	JE	12337	12194	12122	12032	11925	11835	11764	11674	11298	10797
	500×300	OR	17669	17505	17412	17318	17224	17131	17061	16990	16663	16242
	150×100	YA	317	260	235	214	192	176	161	148	106	78
	200×120	NP	864	716	656	602	552	508	470	435	322	240
	250×150	EY	2256	1967	1851	1751	1662	1573	1504	1436	1168	926
	260×180	BL	3874	3547	3392	3252	3127	3011	2925	2847	2536	2217
R60	300×200	RN	5499	5148	4973	4806	4640	4501	4390	4289	3928	3549
	400×200	FN	6438	6033	5818	5615	5401	5198	5040	4882	4375	3924
	350×250	TE	9838	9486	9303	9119	8936	8752	8599	8461	8002	7635
	450×250	JE	11101	10725	10528	10331	10117	9902	9723	9526	8827	8326
	500×300	OR	16546	16171	15984	15773	15586	15399	15212	15048	14346	13737
	150×100	YA	144	116	106	95	89	80	74	70	51	-
	200×120	NP	520	435	401	372	341	315	293	274	208	155
	250×150	EY	1683	1415	1310	1225	1147	1073	1020	968	794	652
	260×180	BL	3197	2808	2645	2497	2365	2248	2163	2077	1797	1564
R90	300×200	RN	4714	4270	4058	3863	3688	3521	3401	3281	2921	2606
	400×200	FN	5412	4905	4657	4420	4206	4003	3834	3687	3236	2875
	350×250	TE	8829	8324	8079	7834	7604	7375	7176	7008	6442	6029
	450×250	JE	9866	9347	9096	8827	8559	8308	8075	7843	7108	6589
	500×300	OR	15212	14720	14463	14229	13971	13714	13489	13246	12357	11631

Bild 10: Tragwiderstandstabellen der ORSO-V Dokumentation

Bemessung der Stütze mit den Anschlussdetails

Für die eigentliche Bemessung sind folgende Werte notwendig:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Raumhöhe	2750 mm	
Querschnittsform	Rechteckig	
Oberfläche	Sa 2.5+ Z 2.40	Dies entspricht der Korrosivitätskategorie C1 gemäss SIA 2022
Höhe x Breite	150 x 250 mm	Diese Abmessung wurde aufgrund der Vorbemessung gewählt.
Normalkraft N _d	1200 kN	
Dauerlastanteil	80%	
Belastungsrichtung	z-Richtung	Die z-Richtung ist bei Rechteckquerschnitten die schwache Richtung (Drehung um die y- Achse)
Randbedingungen im Kaltzustand	Pendelstütze	Obwohl eine Stütze eine gewisse Einspannwirkung aufweist, ist die Modellierung als Pendelstütze auf der sicheren Seite
Zusätzliche Einwirkungen	keine	
Anprall vorhanden	Kein	
Normalkraft im Brandfall N _{fi,d}	750 kN	
Brandwiderstand	R60	Der erforderliche Brandwiderstand für Tragstrukturen ist in der VKF Brandschutzrichtlinie 15-15 ersichtlich.
Berechnungsmethode	EN	Da keine zusätzlichen Einwirkungen vorhanden sind, kann mit der vereinfachten Methode gerechnet werden.
Randbedingungen im Brandzustand	Beidseitig eingespannt	Bei Innenstützen darf bei der Bemessungssituation Brand die Knicklänge verkürzt werden bzw. die Randbedingungen oben und unten dürfen als eingespannt definiert werden.
Zusätzliche Einwirkungen	keine	

Die Bemessungssoftware schlägt als Resultat das Modell EY050 vor. Dieses Modell hat eine Abmessung von 250 x 150 mm und einen Widerstand von N_{Rd} = 2072 kN bzw. $N_{Rd,fi}$ = 847 kN. Als nächstes müssen die Anschlussdetails definiert werden. Dabei ist sowohl oben wie unten eine Stahlbetonplatte vorhanden. Für die Bestimmung des Kopfdetails sind folgende Parameter notwendig

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter		
Anschlusstyp	Stahlbetonplatte			
Dicke	350 mm			
Material	C30/37			
Stützenanordnung	Innenstütze			
Einsenkung	10 mm	Die Einsenkung der Stütze von 10mm erlaubt das Einsenken der Kopfplatte.		
Kraftdurchleitung	keine			

Als mögliche Lösungen werden die Details K61, K62 und K63 angezeigt. In diesem Fall wird das Kopfdetail K61 gewählt, da gemäss DURA Software kein Stahlpilz (K62) notwendig ist und auch keine Lastverteilplatte (K63) benötigt wird.

Bild 11: Auswahl des Kopfdetails

Für die Bestimmung des Fussdetails sind folgende Parameter notwendig:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Anschlusstyp	Stahlbetonplatte	
Dicke	350 mm	
Material	C30/37	
Stützenanordnung	Innenstütze	
Einsenkung	0 mm	
Kraftdurchleitung	keine	
Mörtelschichtdicke	20 mm	Standardwert
Kote OK Bodenplatte	425.85 m ü. M	

Als mögliche Lösungen werden die Details F60, F61 und F62 angezeigt. In diesem Fall wird das Fussdetail F61 gewählt.

Mit der Definition der Anschlussdetails ist die Stützenbemessung abgeschlossen und es kann entweder zur nächsten Stützenposition gewechselt oder die Bemessung beendet werden.

5. Beispiel 2: ORSO-V runde Randstütze

Gesucht ist eine runde ORSO-V Randstütze. Für eine erste Abschätzung sind folgende Werte gegeben:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Raumhöhe	3150 mm	
Querschnittsform	rund	
Normalkraft N _d	850 kN	
Normalkraft im Brandfall N _{fi,d}	530 kN	
Brandwiderstand	R30	

Abschätzung der minimalen Abmessungen mit Tragwiderstandstabellen

Für eine erste Abschätzung der minimalen Abmessungen stehen die Tragwiderstandstabellen in der technischen Dokumentation zur Verfügung. Bei ORSO-V Stützen wird ebenfalls gerade der Tragwiderstand für die Warmbemessung dargestellt. Bild 13 zeigt die Tragwiderstandstabellen für runde Randstützen. Bei einer Last von 850 kN bei der Bemessungssituation Hochbau ist mindestens eine Stützenabmessung von ø133 mm notwendig. Bei der Bemessungssituation Brand (N_{fi,d} = 530 kN, R30) ist eine Mindestabmessung von ø121 mm notwendig. Dabei wurde berücksichtigt, dass die Knicklänge im Brandfall bei Randstützen verringert werden darf. Somit ist in diesem Beispiel die Bemessungssituation Hochbau massgebend.

Durc	hmesser /	/ Knicklänge L _k in [m] – Longueur de flambage L _K en [m]										
Diam	nètre d [mm]	Modell / Modèle	2.0	2.5	2.75	3.0	3.25	3.5	3.75	4.0	5.0	6.0
	102	V	764	547	467	402	352	308	273	243	161	122
	121	U	1237	929	804	700	613	542	481	429	288	204
	133	Q	1928	1536	1354	1193	1056	936	834	746	500	360
	159	D	2925	2525	2310	2090	1882	1694	1529	1380	945	678
oid	178	Z	4113	3676	3442	3187	2932	2683	2449	2236	1575	1149
àfr	194	K	5235	4795	4547	4286	4018	3738	3464	3197	2324	1732
Ξ	219	М	6200	5800	5564	5305	5038	4750	4461	4158	3085	2308
ka	245	w	7919	7523	7283	7015	6738	6443	6138	5815	4564	3443
	273	н	10260	9840	9619	9362	9071	8779	8465	8138	6716	5328
	324	I.	15054	14539	14306	14073	13807	13508	13193	12860	11365	9703
	356	S	18584	18037	17753	17490	17227	16943	16639	16294	14734	12950
	508	G	41523	40870	40522	40131	39738	39390	38998	38607	36909	34864
Durchmesser / Knicklänge L _{k,fi} in [m] im Brandfall – Longueur de flambage L _{k,fi} en [m] en cas d'incendie												
Durc	hmesser /	ŀ	(nicklänge	L _{k,fi} in [m]	im Brandf	all – Longu	ieur de flai	mbage L _{k,fi}	en [m] en	cas d'incer	ndie	
Durc Diam	hmesser / nètre d [mm]	Modell / Modèle	(nicklänge 1.4	L _{k,fi} in [m] 1.75	im Brandf 1.935	all – Longu 2.1	eur de flai 2.275	mbage L _{k,fi} 2.45	en [m] en 2.625	cas d'incer 2.8	ndie 3.5	4.2
Durc Diam	hmesser / nètre d [mm] 102	Modell / Modèle V	(nicklänge 1.4 517	L _{k,fi} in [m] 1.75 409	im Brandf 1.935 363	all – Longu 2.1 322	eur de fla 2.275 285	nbage L _{k,fi} 2.45 251	en [m] en 2.625 227	cas d'incer 2.8 204	ndie 3.5 138	4.2
Durc Diam	hmesser / nètre d [mm] 102 121	Modell / Modèle V U	(nicklänge 1.4 517 926	L _{k,fi} in [m] 1.75 409 764	im Brandf 1.935 363 685	all – Longu 2.1 322 612	eur de flai 2.275 285 545	mbage L _{k,fi} 2.45 251 485	en [m] en 2.625 227 438	cas d'incer 2.8 204 395	ndie 3.5 138 269	4.2 99 193
Durc	hmesser / nètre d [mm] 102 121 133	Modell / Modèle V U Q	(nicklänge 1.4 517 926 1459	L _{k,fi} in [m] 1.75 409 764 1275	im Brandf 1.935 363 685 1187	all – Longu 2.1 322 612 1098	eur de flar 2.275 285 545 1016	nbage L _{k,fi} 2.45 251 485 930	en [m] en 2.625 227 438 864	cas d'incer 2.8 204 395 794	ndie 3.5 138 269 573	4.2 99 193 418
Durc	hmesser / nètre d [mm] 102 121 133 159	Modell / Modèle V U Q D	(nicklänge 1.4 517 926 1459 2434	L _{k,fi} in [m] 1.75 409 764 1275 2230	im Brandf 1.935 363 685 1187 2128	all - Longu 2.1 322 612 1098 2026	eur de flar 2.275 285 545 1016 1919	nbage L _{k,fi} 2.45 251 485 930 1809	en [m] en 2.625 227 438 864 1711	cas d'incer 2.8 204 395 794 1613	ndie 3.5 138 269 573 1226	4.2 99 193 418 915
Durc	hmesser / hetre d [mm] 102 121 133 159 178	V V Q D Z	(nicklänge 1.4 517 926 1459 2434 3543	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296	im Brandf 1.935 363 685 1187 2128 3184	all - Longu 2.1 322 612 1098 2026 3072	eur de flar 2.275 285 545 1016 1919 2949	nbage L _{k,fi} 2.45 251 485 930 1809 2825	en [m] en 2.625 227 438 864 1711 2724	cas d'incer 2.8 204 395 794 1613 2612	ndie 3.5 138 269 573 1226 2119	4.2 99 193 418 915 1648
Durc Diam	hmesser / hetre d [mm] 102 121 133 159 178 194	K Modell / Modèle V U Q D Z K	(nicklänge 1.4 517 926 1459 2434 3543 4588	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296 4287	im Brandf 1.935 363 685 1187 2128 3184 4164	all - Longu 2.1 322 612 1098 2026 3072 4048	eur de flar 2.275 285 545 1016 1919 2949 3925	nbage L _{k,fi} 2.45 251 485 930 1809 2825 3803	en [m] en 2.625 227 438 864 1711 2724 3700	cas d'incer 2.8 204 395 794 1613 2612 3598	ndie 3.5 138 269 573 1226 2119 3127	4.2 99 193 418 915 1648 2574
Durc Diam	hmesser / hetre d [mm] 102 121 133 159 178 194 219	Modell / Modèle V U Q D Z K M	(nicklänge 1.4 517 926 1459 2434 3543 4588 5935	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296 4287 5678	im Brandf 1.935 363 685 1187 2128 3184 4164 5566	all - Longu 2.1 322 612 1098 2026 3072 4048 5454	eur de flar 2.275 285 545 1016 1919 2949 3925 5333	nbage L _{k,fi} 2.45 485 930 1809 2825 3803 5197	en [m] en 2.625 227 438 864 1711 2724 3700 5101	cas d'incer 2.8 204 395 794 1613 2612 3598 4988	ndie 3.5 138 269 573 1226 2119 3127 4403	4.2 99 193 418 915 1648 2574 3592
Durc Dian	hmesser / hetre d [mm] 102 121 133 159 178 194 219 245	Modell / Modèle V U Q D Z K M W	(nicklänge 1.4 517 926 1459 2434 3543 4588 5935 7792	L _{k.fi} in [m] 1.75 409 764 1275 2230 3296 4287 5678 7522	im Brandf 1.935 363 685 1187 2128 3184 4164 5566 7422	all - Longu 2.1 322 612 1098 2026 3072 4048 5454 7312	eur de flar 2.275 285 545 1016 1919 2949 3925 5333 7182	nbage L _{k,fi} 2.45 251 485 930 1809 2825 3803 5197 7052	en [m] en 2.625 227 438 864 1711 2724 3700 5101 6952	cas d'incer 2.8 204 395 794 1613 2612 3598 4988 6842	ndie 3.5 138 269 573 1226 2119 3127 4403 6282	4.2 99 193 418 915 1648 2574 3592 5452
Durc Dian	hmesser / hètre d [mm] 102 121 133 159 178 194 219 245 273	Modell / Modèle	(nicklänge 1.4 517 926 1459 2434 3543 4588 5935 7792 10269	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296 4287 5678 7522 9980	im Brandf 1.935 363 685 1187 2128 3184 4164 5566 7422 9866	all - Longu 2.1 322 612 1098 2026 3072 4048 5454 7312 9766	eur de flar 2.275 285 545 1016 1919 2949 3925 5333 7182 9653	nbage L _{k,fi} 2.45 251 485 930 1809 2825 3803 5197 7052 9539	en [m] en 2.625 227 438 864 1711 2724 3700 5101 6952 9451	cas d'incer 2.8 204 395 794 1613 2612 3598 4988 6842 9363	ndie 3.5 138 269 573 1226 2119 3127 4403 6282 8923	4.2 99 193 418 915 1648 2574 3592 5452 8243
Durc Dian	hmesser / hètre d [mm] 102 121 133 159 178 194 219 245 273 324	Modell / Modèle	(nicklänge 1.4 517 926 1459 2434 3543 4588 5935 7792 10269 15339	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296 4287 5678 7522 9980 15035	im Brandf 1.935 363 685 1187 2128 3184 4164 5566 7422 9866 14892	2.1 322 612 1098 2026 3072 4048 5454 7312 9766 14767	eur de flat 2.275 285 545 1016 1919 2949 3925 5333 7182 9653 14660	nbage L _{k,fi} 2.45 251 485 930 1809 2825 3803 5197 7052 9539 14553	en [m] en 2.625 227 438 864 1711 2724 3700 5101 6952 9451 14500	cas d'incer 2.8 204 395 794 1613 2612 3598 4988 6842 9363 14428	3.5 138 269 573 1226 2119 3127 4403 6282 8923 14107	4.2 99 193 418 915 1648 2574 3592 5452 8243 13660
Durc Diam	hmesser / hètre d [mm] 102 121 133 159 178 194 219 245 273 324 356	Modell / Modèle	(nicklänge 1.4 517 926 1459 2434 3543 4588 5935 7792 10269 15339 19033	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296 4287 5678 7522 9980 15035 18728	im Brandf 1.935 363 685 1187 2128 3184 4164 5566 7422 9866 14892 18576	2.1 322 612 1098 2026 3072 4048 5454 7312 9766 14767 18467	eur de flar 2.275 285 545 1016 1919 2949 3925 5333 7182 9653 14660 18337	nbage L _{k,fi} 2.45 251 485 930 1809 2825 3803 5197 7052 9539 14553 18228	en [m] en 2.625 227 438 864 1711 2724 3700 5101 6952 9451 14500 18163	cas d'incer 2.8 204 395 794 1613 2612 3598 4988 6842 9363 14428 18119	ndie 3.5 138 269 573 1226 2119 3127 4403 6282 8923 14107 17858	4.2 99 193 418 915 1648 2574 3592 5452 8243 13660 17467
Durc Diam	hmesser / hètre d [mm] 102 121 133 159 178 194 219 245 273 324 356 508	Modell / Modèle	(nicklänge 1.4 517 926 1459 2434 3543 4588 5935 7792 10269 15339 19033 42882	L _{k,fi} in [m] 1.75 409 764 1275 2230 3296 4287 5678 7522 9980 15035 18728 42462	im Brandf 1.935 363 685 1187 2128 3184 4164 5566 7422 9866 14892 18576 42232	all - Longu 2.1 322 612 1098 2026 3072 4048 5454 7312 9766 14767 18467 42047	eur de flat 2.275 285 545 1016 1919 2949 3925 5333 7182 9653 14660 18337 41861	nbage L _{k,fi} 2.45 251 485 930 1809 2825 3803 5197 7052 9539 14553 18228 41722	en [m] en 2.625 227 438 864 1711 2724 3700 5101 6952 9451 14500 18163 41629	cas d'incer 2.8 204 395 794 1613 2612 3598 4988 6842 9363 14428 18119 41583	ndie 3.5 138 269 573 1226 2119 3127 4403 6282 8923 14107 17858 41351	4.2 99 193 418 915 1648 2574 3592 5452 8243 13660 17467 41118

Bild 13: Tragwiderstandstabellen der ORSO-V Dokumentation

Bemessung der Stütze mit den Anschlussdetails

Für die eigentliche Bemessung sind folgende Werte notwendig:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Raumhöhe	3150 mm	
Querschnittsform	Rund	
Oberfläche	Sa 2.5+ Z 2.40	Dies entspricht der Korrosivitätskategorie C1 gemäss SIA 2022
Höhe x Breite	133 mm	Diese Abmessung wurde aufgrund der Vorbemessung gewählt.
Normalkraft N _d	850 kN	
Dauerlastanteil	80%	
Belastungsrichtung	z-Richtung	Die z-Richtung ist bei Rechteckquerschnitten die schwache Richtung (Drehung um die y- Achse)
Randbedingungen im Kaltzustand	Pendelstütze	Obwohl eine Stütze eine gewisse Einspannwirkung aufweist, ist die Modellierung als Pendelstütze auf der sicheren Seite
Zusätzliche Einwirkungen	keine	
Anprall vorhanden	Kein	
Normalkraft im Brandfall N _{fi,d}	530 kN	
Brandwiderstand	R30	Der erforderliche Brandwiderstand für Tragstrukturen ist in der VKF Brandschutzrichtlinie 15-15 ersichtlich.
Berechnungsmethode	EN	Da keine zusätzlichen Einwirkungen vorhanden sind, kann mit der vereinfachten Methode gerechnet werden.
Randbedingungen im Brandzustand	Unten eingespannt	Bei Randstützen darf bei der Bemessungssituation Brand die Knicklänge verkürzt werden bzw. die Randbedingungen dürfen als einseitig eingespannt definiert werden. In diesem Fall wurde unten eingespannt gewählt.
Zusätzliche Einwirkungen	keine	

Die Bemessungssoftware schlägt als Resultat das Modell Q5 vor. Dieses Modell hat eine Abmessung von ø133 mm und einen Widerstand von N_{Rd} = 914 kN bzw. $N_{Rd,fi}$ = 816 kN. Als nächstes müssen die Anschlussdetails definiert werden. Dabei ist sowohl oben wie unten eine Stahlbetonplatte vorhanden. Für die Bestimmung des Kopfdetails sind folgende Parameter notwendig:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Anschlusstyp	Stahlbetonplatte	
Dicke	250 mm	
Material	C30/37	
Stützenanordnung	Randstütze	
Randabstand	0 mm	Die Stütze sollte bündig mit dem Rand versetzt werden.
Rand parallel zu	y-Achse	
Einsenkung	0 mm	
Kraftdurchleitung	vorhanden	
Durchzuleitende Kraft	500 kN	

Als mögliche Lösungen werden die Details K65 und K66 angezeigt. In diesem Fall wird das Kopfdetail K66 gewählt.

Bild 14: Auswahl des Kopfdetails

Für die Bestimmung des Fussdetails sind folgende Parameter notwendig:

Eingabeparameter	Wert	Hinweise zur Wahl der Parameter
Anschlusstyp	Stahlbetonplatte	
Dicke	350 mm	
Material	C30/37	
Stützenanordnung	Randstütze	
Randabstand	0 mm	
Rand parallel zu	y-Achse	
Einsenkung	0 mm	
Kraftdurchleitung	keine	
Mörtelschichtdicke	20 mm	Standardwert
Kote OK Bodenplatte	425.85 m ü. M	

Als mögliche Lösung wird das Detail F62 angezeigt.

Bild 15: Auswahl des Fussdetails

Generell wäre hier die Bemessung abgeschlossen. Da allerdings in diesem Beispiel die Stütze bündig mit dem Plattenrand vorgesehen ist, müssen die Lastverteilplatten beim Fuss und Kopfdetail exzentrisch angeordnet werden. Dies wird in der Berechnung der Lastverteilplatten bereits berücksichtigt und ist bei den Resultaten mit den Werten e_y und e_z ersichtlich (Bild 16 und Bild 17).

Bild 16: Resultate der Kopf und Fussdetails

Dies bedeutet, dass eine Lastexzentrizität bzw. Reaktionsexzentrizität in der Stützenbemessung notwendig ist. Daher muss die Stütze nochmals neu bemessen werden. Bei den zusätzlichen Einwirkungen werden hierzu Werte für M_{y2} und e_{z0} eingegeben.

Beim Kopfdetail entsteht nur eine Exzentrizität bzw. ein Moment infolge der exzentrischen Krafteinleitung der Lastverteilplatte ($N_{d,LVP}$). Daher kann die zentrisch wirkende Last in der Lastdurchleitung ($N_{d,LDL}$) bei der Kopfmomentberechnung abgezogen werden.

$$M_{yd} = (N_d - A_s \cdot f_{sd}) \cdot e_z = (850 - 804 \cdot 435/1000) \cdot 0.008 = 4 \text{ kNm}$$

Da beim Fussdetail die gesamte Last bzw. Reaktion exzentrisch ist, kann direkt die Exzentrizität $e_{z0} = -13$ mm eingeben werden. Die Vorzeichen sind so zu setzen, dass jeweils eine Belastung der Stütze stattfindet und keine Entlastung.

	Zusätzliche Einwirkungen	\checkmark			
	Stützenkopf M _{y2}	4.0	kNm (j) Belastung: "+"	
	e ₂₂	-0.0	mm	Belastung: "-"	
	Verteilte Belastung q _{z.d}	0.0	kN/m	Belastung: "+"	
	Einzellast Q _{z,d}	0.0	kN	Belastung: "+"	
	h _{Qz,d}	0.0	mm		
	Stützenfuss M _{y0}	-0.0	kNm	Belastung: "-"	
	e ₂₀	-13.0	mm	Belastung: "-"	
Bild 18: Resultate	der Kopf und Fu	issdetails			

Diese Eingaben werden nur bei der Bemessungssituation Hochbau eingeben, da die reduzierte Last im Brandfall keine Lastverteilplatte benötigt und es deshalb nicht zu einer Exzentrizität führt.

Anschliessend wird nochmals die Lösung gesucht. Als Resultat wird nun die Stütze Q6 ausgegeben. Dieses Modell hat eine Abmessung von ø133 mm und einen Widerstand von N_{Rd} = 875 kN bzw. $N_{Rd,fi}$ = 1061 kN. Da die Abmessung nicht geändert hat, bleiben die Kopf- und Fussdetails dieselben.

Würde in diesem Beispiel bei den Kopf- wie auch beim Fussdetail die Stütze um 50 mm vom Rand abgesetzt angeordnet, könnte für das Kopfdetail das wirtschaftlichere K64 und beim Fussdetail das F62 mit einer zentrischen Lastverteilplatte gewählt werden. Somit müssten in diesem Fall keine Exzentrizitäten beachtet werden und es könnte das wirtschaftlichere Stützen-Modell Q5 verwendet werden. Daher ist es sinnvoll die Stützen nach Möglichkeit vom Plattenrand abzusetzen. Dies kann selbst bei geringen Distanzen zu Kostenersparnissen führen.

6. Bezeichnungen

d	Statische Höhe
e _{0d}	Ersatzexzentrizität unter Berücksichtigung der geometrischer Imperfektion und
	Eigenspannungszuständen
e _{1d}	Exzentrizität erster Ordnung
e _{2d}	Exzentrizität zweiter Ordnung
L	Stützenlänge (in der Software als Raumhöhe bezeichnet)
L _k	Knicklänge
M _y , M _z	Momente um y- und z-Achse
M _{Ed,II}	Bemessungsmoment der Stütze nach Theorie 2. Ordnung unter Beachtung der
	Ersatzimperfektionen
$M_{pl,N,Rd}$	Biegewiderstand in Abhängigkeit der Normalkraft N _d
N _d	Bemessungswert der Normalkraft bei der Bemessungssituation Hochbau
N _{acc,d}	Bemessungswert der Normalkraft bei der Bemessungssituation Anprall
N _{fi,d}	Bemessungswert der Normalkraft bei der Bemessungssituation Brand
N _{Rd}	Bemessungswert des Normalkraftwiderstands
N _{Rk}	Charakteristischer Wert des Normalkraftwiderstands
N _x	Normalkraft in Stützenachse
Xd	Krümmung
Х к	Abminderungsfaktor infolge Knicken
х	Koordinatenachse in Stützenlängsrichtung
y, z	Koordinatenachsen in der Querschnittsebene

7. Literatur

SIA 260:2013	Grundlagen der Projektierung von Tragwerken
SIA 261:2014	Einwirkungen auf Tragwerke
SIA 262:2013	Betonbau
SIA 263:2013	Stahlbau
SIA 264:2014	Stahl-Beton-Verbundbau
SIA 2022:2003	Oberflächenschutz von Stahlkonstruktionen
SN EN 1992-1-2:2004	Bemessung und Konstruktion von Stahlbeton- und Spannbeton
	Tragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall
SN EN 1994-1-2:2005	Bemessung und Konstruktion von Verbundtragwerken aus Stahl und
	Beton -Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den
	Brandfall
SZS C5	Konstruktionstabellen

Bemerkungen zum vorliegenden Dokument

Dokumentationen erfahren laufend Änderungen aufgrund der aktualisierten Normen und der Weiterentwicklung Die aktuell gültige Version dieses Fachreferats befindet sich auf unserer Website. Im Weiteren verweisen wir auf unsere AGB's.

05.2018 Copyright © by F.J. Aschwanden AG CH-3250 Lyss T 032 387 95 95 F 032 387 95 99 www.aschwanden.com info@aschwanden.com

